Yu Song1,2, Xin Yao1,2, Yunhong Tan1,2, Yi Gan3, Junbo Yang4, Richard T. Corlett1,2
1Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
2Southeast Asia Biodiversity Research Institute, Chinese Academy of Science, Nay Pyi Taw, Myanmar
3School of Agriculture and Food Science, Zhejiang A & F University, Hangzhou, China
4Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
Tóm tắt
Phoebe is an economically important genus from the family Lauraceae. It is widely distributed in tropical and subtropical Asia, but systematics of the genus is unclear, and currently there is no species-level phylogeny. Here, we determined the complete chloroplast genome sequences of two species with long-range PCR and next genome sequencing technologies, and identified mutation sites and highly variable regions. These highly variable sites were used to reconstruct the phylogeny. The plastomes of Phoebe sheareri and P. omeiensis were 152, 876, and 152, 855 bp, respectively. Comparative genomic analysis indicated that there are 222 mutation sites including 146 substitutions, 73 indels, and 3 microinversions in both plastomes. Fifty-six single-nucleotide changes were identified in gene-coding regions, and 45 microsatellite sites were found for use in species identification. Fourteen divergence hotspots of 38 variable regions were located. Phylogeny was reconstructed using a Bayesian and maximum likelihood approach for 12 Phoebe species and other five related Lauraceae based on 15 of the highly variable regions including accD-psaI, atpB-rbcL, ndhC-trnV, ndhF-rpl32, petA-psbJ, psaA, psbA-trnH, rbcL, rps8-rpl14, rps16-trnQ, rpl32-trnL, trnC-petN, trnL-trnF, trnS-trnG, and ycf1 indicated that variability in the chloroplast regions proposed as variable is enough to detect divergence events among 12 taxa of Phoebe, and that maybe also useful to help to elucidate further relationships among other taxa of the genus.