Chitosan enhances rosmarinic acid production in shoot cultures of Melissa officinalis L. through the induction of methyl jasmonate

Botanical Studies - Tập 60 - Trang 1-10 - 2019
Ghazaleh Fooladi vanda1, Leila Shabani1, Roya Razavizadeh2
1Department of Biology, Faculty of Sciences, Shahrekord University, Shahrekord, Iran
2Department of Biology, Payame Noor University, Tehran, Iran

Tóm tắt

Chitosan is a polycationic polysaccharide derived from chitin that has been recognized as an effective elicitor in the production of secondary metabolites of many medicinal plants. In this study, the effect of abiotic elicitor (chitosan) at various concentrations on rosmarinic acid (RA) and total phenolic accumulation in shoot cultures of lemon balm was investigated. Treatment of shoots by chitosan led to a noticeable induction of phenylalanine ammonia-lyase (PAL), catalase (CAT), guaiacol peroxidase (GPX) and lipoxygenase (LOX) activities. Besides, the expression of PAL1, TAT and RAS genes and accumulation of RA and phenolic compound increased in chitosan-treated lemon balm shoots. Chitosan treatment also increased H2O2 accumulation and the expression of RBOH, an essential gene implicated in ROS production. Also, the up-regulation of the OPR gene by exogenous chitosan was associated with the induction of endogenous JA determined by GC-MASS. The present study showed that the induced production of rosmarinic acid by chitosan involves the trigger of defense-related enzymes, up-regulated expression of TAT and RAS genes, and stimulation of JA biosynthesis.

Tài liệu tham khảo

Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

Algam S, Xie G, Li B, Yu S, Su T, Larsen J (2010) Effects of Paenibacillus strains and chitosan on plant growth promotion and control of Ralstonia wilt in tomato. J. Plant Pathol 92:593–600

Amin AA, Rashad M, El-Abagy HMH (2007) Physiological effect of indole-3-butyric acid and salicylic acid on growth, yield and chemical constituents of onion plants. J Appl Sci Res 3:1554–1563

Chandrkrachang S, Sompongchaikul P, Sangtain S (2005) Profitable spin-off from using chitosan in orchid farming in Thailand. J Metals Mater. Miner 15:45–48

Esmaeilzadeh S, Sharifi M, Safaei N, Behmanesh M (2012) Enhancement of lignan and phenylpropanoid compounds production by chitosan and chitin in Linum album cell culture. IJPB 4:13–26

Gornik K, Grzesik M, Duda BR (2008) The effect of chitosan on rooting of grape vine cuttings and on subsequent plant growth under drought and temperature stress. J. Fruit Ornam Plant Res 16:333–343

Hao G, Ji HW, Li YL, Shi RJ, Wang JM, Feng L et al (2012) Exogenous ABA and polyamines enhanced salvianolic acids contents in hairy root cultures of Salvia miltiorrhiza Bge. f. alba. Plant OMICS 5:446–452

Khan WM, Prithiviraj B, Smith DL (2002) Effect of foliar application of chitin oligosaccharides on photosynthesis of maize and soybean. Photosynthetica 40:621–624