An insight into the role of the association equations of states in gas hydrate modeling: a review

Elsevier BV - Tập 17 - Trang 1432-1450 - 2020
Feridun Esmaeilzadeh1, Nazanin Hamedi1, Dornaz Karimipourfard1, Ali Rasoolzadeh1
1Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran

Tóm tắt

Encouraged by the wide spectrum of novel applications of gas hydrates, e.g., energy recovery, gas separation, gas storage, gas transportation, water desalination, and hydrogen hydrate as a green energy resource, as well as CO2 capturing, many scientists have focused their attention on investigating this important phenomenon. Of course, from an engineering viewpoint, the mathematical modeling of gas hydrates is of paramount importance, as anticipation of gas hydrate stability conditions is effective in the design and control of industrial processes. Overall, the thermodynamic modeling of gas hydrate can be tackled as an equilibration of three phases, i.e., liquid, gas, and solid hydrate. The inseparable component in all hydrate systems, water, is highly polar and non-ideal, necessitating the use of more advanced equation of states (EoSs) that take into account more intermolecular forces for thermodynamic modeling of these systems. Motivated by the ever-increasing number of publications on this topic, this study aims to review the application of associating EoSs for the thermodynamic modeling of gas hydrates. Three most important hydrate-based models available in the literature including the van der Waals–Platteeuw (vdW–P) model, Chen–Guo model, and Klauda–Sandler model coupled with CPA and SAFT EoSs were investigated and compared with cubic EoSs. It was concluded that the CPA and SAFT EoSs gave very accurate results for hydrate systems as they take into account the association interactions, which are very crucial in gas hydrate systems in which water, methanol, glycols, and other types of associating compounds are available. Moreover, it was concluded that the CPA EoS is easier to use than the SAFT-type EoSs and our suggestion for the gas hydrate systems is the CPA EoS.

Tài liệu tham khảo

Abolala M, Varaminian F. Thermodynamic model for predicting equilibrium conditions of clathrate hydrates of noble gases + light hydrocarbons: combination of Van der Waals-Platteeuw model and sPC-SAFT EoS. J Chem Thermodyn. 2015;81:89–94. https://doi.org/10.1016/j.jct.2014.09.013.

Afzal W, Mohammadi AH, Richon D. Experimental measurements and predictions of dissociation conditions for carbon dioxide and methane hydrates in the presence of triethylene glycol aqueous solutions. J Chem Eng Data. 2007;52(5):2053–5. https://doi.org/10.1021/je700170t.

Ahmadian S, Mohammadi M, Ehsani MR. Thermodynamic modeling of methane hydrate formation in the presence of imidazolium-based ionic liquids using two-step hydrate formation theory and CPA EoS. Fluid Phase Equilib. 2018;474:32–42. https://doi.org/10.1016/j.fluid.2018.07.004.

Akiya T, Shimazaki T, Oowa M, Matsuo M, Yoshida Y. Formation conditions of clathrates between HFC alternative refrigerants and water. Int J Thermophys. 1999;20(6):1753–63. https://doi.org/10.1023/A:1022614114505.

Al-Adel S, Dick JA, El-Ghafari R, Servio P. The effect of biological and polymeric inhibitors on methane gas hydrate growth kinetics. Fluid Phase Equilib. 2008;267(1):92–8. https://doi.org/10.1016/j.fluid.2008.02.012.

Aliabadi M, Rasoolzadeh A, Esmaeilzadeh F, Alamdari A. Experimental study of using CuO nanoparticles as a methane hydrate promoter. J Nat Gas Sci Eng. 2015;27:1518–22. https://doi.org/10.1016/j.jngse.2015.10.017.

Arjmandi M, Chapoy A, Tohidi B. Equilibrium data of hydrogen, methane, nitrogen, carbon dioxide, and natural gas in semi-clathrate hydrates of tetrabutyl ammonium bromide. J Chem Eng Data. 2007;52(6):2153–8. https://doi.org/10.1021/je700144p.

Avlonitis D, Danesh A, Todd AC. Prediction of VL and VLL equilibria of mixtures containing petroleum reservoir fluids and methanol with a cubic EoS. Fluid Phase Equilib. 1994;94:181–216. https://doi.org/10.1016/0378-3812(94)87057-8.

Bakhtyari A, Fayazi Y, Esmaeilzadeh F, Fathikaljahi J. Experimental determination of the temperature suppression in formation of gas hydrate in water based drilling mud. J Pet Sci Technol. 2018;8(1):16–31. https://doi.org/10.22078/jpst.2017.2103.1372.

Boesen RR, Herslund PJ, Sørensen H. Loss of monoethylene glycol to CO2 and H2S-rich fluids: modeled using Soave–Redlich–Kwong with the Huron and Vidal mixing rule and Cubic-Plus-Association equations of state. Energy Fuels. 2017;31(4):3417–26. https://doi.org/10.1021/acs.energyfuels.6b02365.

Chapoy A, Haghighi H, Burgass R, Tohidi B. Gas hydrates in low water content gases: experimental measurements and modelling using the CPA equation of state. Fluid Phase Equilib. 2010;296(1):9–14. https://doi.org/10.1016/j.fluid.2009.11.026.

Chapoy A, Mazloum S, Burgass R, Haghighi H, Tohidi B. Clathrate hydrate equilibria in mixed monoethylene glycol and electrolyte aqueous solutions. J Chem Thermodyn. 2012b;48:7–12. https://doi.org/10.1016/j.jct.2011.12.031.

Chapoy A, Burgass R, Tohidi B, Alsiyabi I. Hydrate and phase behavior modeling in CO2-rich pipelines. J Chem Eng Data. 2015;60(2):447–53. https://doi.org/10.1021/je500834t.

Chen G-J, Guo T-M. A new approach to gas hydrate modelling. Chem Eng J. 1998;71(2):145–51. https://doi.org/10.1016/S1385-8947(98)00126-0.

Chin H-Y, Hsieh M-K, Chen Y-P, Chen P-C, Lin S-T, Chen L-J. Prediction of phase equilibrium for gas hydrate in the presence of organic inhibitors and electrolytes by using an explicit pressure-dependent Langmuir adsorption constant in the van der Waals-Platteeuw model. J Chem Thermodyn. 2013;66:34–43. https://doi.org/10.1016/j.jct.2013.06.014.

Claussen W. A second water structure for inert gas hydrates. J Chem Phys. 1951;19(11):1425–6. https://doi.org/10.1063/1.1748079.

Collett TS. Energy resource potential of natural gas hydrates. AAPG Bull. 2002;86(11):1971–92. https://doi.org/10.1306/61EEDDD2-173E-11D7-8645000102C1865D.

Daraboina N, Linga P, Ripmeester J, Walker VK, Englezos P. Natural gas hydrate formation and decomposition in the presence of kinetic inhibitors. 2. Stirred reactor experiments. Energy Fuels. 2011;25(10):4384–91. https://doi.org/10.1021/ef200813v.

Dickens GR. Rethinking the global carbon cycle with a large, dynamic and microbially mediated gas hydrate capacitor. Earth Planet Sci Lett. 2003;213(3):169–83. https://doi.org/10.1016/S0012-821X(03)00325-X.

Duc NH, Chauvy F, Herri J-M. CO2 capture by hydrate crystallization—a potential solution for gas emission of steelmaking industry. Energy Convers Manag. 2007;48(4):1313–22. https://doi.org/10.1016/j.enconman.2006.09.024.

Economou IG. Statistical associating fluid theory: a successful model for the calculation of thermodynamic and phase equilibrium properties of complex fluid mixtures. Ind Eng Chem Res. 2002;41(5):953–62. https://doi.org/10.1021/ie0102201.

Eslamimanesh A, Gharagheizi F, Illbeigi M, Mohammadi AH, Fazlali A, Richon D. Phase equilibrium modeling of clathrate hydrates of methane, carbon dioxide, nitrogen, and hydrogen + water soluble organic promoters using Support Vector Machine algorithm. Fluid Phase Equilib. 2012a;316:34–45. https://doi.org/10.1016/j.fluid.2011.11.029.

Esmaeilzadeh F. Simulation examines ice, hydrate formation in Iran separator centers. Oil Gas J. 2006;104(11):46–52.

Esmaeilzadeh F, Roshanfekr M. A new cubic equation of state for reservoir fluids. Fluid Phase Equilib. 2006;239(1):83–90. https://doi.org/10.1016/j.fluid.2005.10.013.

Esmaeilzadeh F, Zeighami M, Kaljahi J. 1-D mathematical modeling of hydrate decomposition in porous media by depressurization and thermal stimulation. J Porous Media. 2011;14:1–16. https://doi.org/10.1615/JPorMedia.v14.i1.10.

Folas GK, Kontogeorgis GM, Michelsen ML, Stenby EH. Vapor–liquid, liquid–liquid and vapor–liquid–liquid equilibrium of binary and multicomponent systems with MEG: modeling with the CPA EoS and an EoS/GE model. Fluid Phase Equilib. 2006;249(1):67–74. https://doi.org/10.1016/j.fluid.2006.08.021.

Fouad WA, Song KY, Chapman WG. Experimental measurements and molecular modeling of the hydrate equilibrium as a function of water content for pressures up to 40 MPa. Ind Eng Chem Res. 2015;54(39):9637–44. https://doi.org/10.1021/acs.iecr.5b02240.

Gil-Villegas A, Galindo A, Whitehead PJ, Mills SJ, Jackson G, Burgess AN. Statistical associating fluid theory for chain molecules with attractive potentials of variable range. J Chem Phys. 1997;106(10):4168–86. https://doi.org/10.1063/1.473101.

Gudmundsson JS, Parlaktuna M, Khokhar A. Storage of natural gas as frozen hydrate. SPE Prod Facil. 1994;9(01):69–73. https://doi.org/10.2118/24924-PA.

Haghighi H. Methane and water phase equilibria in the presence of single and mixed electrolyte solutions using the Cubic-Plus-Association Equation of State. Oil Gas Sci Technol. 2009;64:141–54. https://doi.org/10.2516/ogst:2008043.

Haghighi H, Chapoy A, Burgess R, Mazloum S, Tohidi B. Phase equilibria for petroleum reservoir fluids containing water and aqueous methanol solutions: experimental measurements and modelling using the CPA equation of state. Fluid Phase Equilib. 2009a;278(1):109–16. https://doi.org/10.1016/j.fluid.2009.01.009.

Haghighi H, Chapoy A, Burgess R, Tohidi B. Experimental and thermodynamic modelling of systems containing water and ethylene glycol: application to flow assurance and gas processing. Fluid Phase Equilib. 2009b;276(1):24–30. https://doi.org/10.1016/j.fluid.2008.10.006.

Hashimoto S, Miyauchi H, Inoue Y, Ohgaki K. Thermodynamic and Raman spectroscopic studies on Difluoromethane (HFC-32) + Water binary system. J Chem Eng Data. 2010;55(8):2764–8. https://doi.org/10.1021/je9009859.

Hejrati Lahijani MA, Xiao C. SAFT modeling of multiphase equilibria of methane–CO2–water–hydrate. Fuel. 2017;188:636–44. https://doi.org/10.1016/j.fuel.2016.10.008.

Herslund PJ, Thomsen K, Abildskov J, von Solms N. Phase equilibrium modeling of gas hydrate systems for CO2 capture. J Chem Thermodyn. 2012;48:13–27. https://doi.org/10.1016/j.jct.2011.12.039.

Herslund PJ, Daraboina N, Thomsen K, Abildskov J, von Solms N. Measuring and modelling of the combined thermodynamic promoting effect of tetrahydrofuran and cyclopentane on carbon dioxide hydrates. Fluid Phase Equilib. 2014a;381:20–7. https://doi.org/10.1016/j.fluid.2014.08.015.

Herslund PJ, Thomsen K, Abildskov J, von Solms N. Modelling of cyclopentane promoted gas hydrate systems for carbon dioxide capture processes. Fluid Phase Equilib. 2014b;375:89–103. https://doi.org/10.1016/j.fluid.2014.04.039.

Herslund PJ, Thomsen K, Abildskov J, von Solms N. Modelling of tetrahydrofuran promoted gas hydrate systems for carbon dioxide capture processes. Fluid Phase Equilib. 2014c;375:45–65. https://doi.org/10.1016/j.fluid.2014.04.031.

Hsieh M-K, Yeh Y-T, Chen Y-P, Chen P-C, Lin S-T, Chen L-J. Predictive method for the change in equilibrium conditions of gas hydrates with addition of inhibitors and electrolytes. Ind Eng Chem Res. 2012;51(5):2456–69. https://doi.org/10.1021/ie202103a.

Huron MJ, Vidal J. New mixing rules in simple equations of state for representing vapour-liquid equilibria of strongly non-ideal mixtures. Fluid Phase Equilib. 1979;3(4):255–71. https://doi.org/10.1016/0378-3812(79)80001-1.

Illbeigi M, Fazlali A, Mohammadi AH. Thermodynamic model for the prediction of equilibrium conditions of clathrate hydrates of methane + water-soluble or-insoluble hydrate former. Ind Eng Chem Res. 2011;50(15):9437–50. https://doi.org/10.1021/ie200442h.

Javanmardi J, Moshfeghian M, Maddox RN. An accurate model for prediction of gas hydrate formation conditions in mixtures of aqueous electrolyte solutions and alcohol. Can J Chem Eng. 2001;79(3):367–73. https://doi.org/10.1002/cjce.5450790309.

Javanmardi J, Ayatollahi S, Motealleh R, Moshfeghian M. Experimental measurement and modeling of R22 (CHClF2) hydrates in mixtures of Acetone + Water. J Chem Eng Data. 2004;49(4):886–9. https://doi.org/10.1021/je034198p.

Jiang H, Adidharma H. Hydrate equilibrium modeling for pure alkanes and mixtures of alkanes using statistical associating fluid theory. Ind Eng Chem Res. 2011;50:12815–23. https://doi.org/10.1021/ie2014444.

Jiang H, Adidharma H. Thermodynamic modeling of aqueous ionic liquid solutions and prediction of methane hydrate dissociation conditions in the presence of ionic liquid. Chem Eng Sci. 2013;102:24–31. https://doi.org/10.1016/j.ces.2013.07.049.

Kamata Y, Oyama H, Shimada W, Ebinuma T, Takeya S, Uchida T, et al. Gas separation method using tetra-n-butyl ammonium bromide semi-clathrate hydrate. Jpn J Appl Phys. 2004;43(1R):362. https://doi.org/10.1143/JJAP.43.362.

Kang S-P, Lee H. Recovery of CO2 from flue gas using gas hydrate: thermodynamic verification through phase equilibrium measurements. Environ Sci Technol. 2000;34(20):4397–400. https://doi.org/10.1021/es001148l.

Karakatsani EK, Kontogeorgis GM. Thermodynamic modeling of natural gas systems containing water. Ind Eng Chem Res. 2013;52(9):3499–513. https://doi.org/10.1021/ie302916h.

Karamoddin M, Varaminian F. Experimental measurement of phase equilibrium for gas hydrates of refrigerants, and thermodynamic modeling by SRK, VPT and CPA EoSs. J Chem Thermodyn. 2013;65:213–9. https://doi.org/10.1016/j.jct.2013.06.001.

Kelland MA. History of the development of low dosage hydrate inhibitors. Energy Fuels. 2006;20(3):825–47. https://doi.org/10.1021/ef050427x.

Khokhar A, Gudmundsson J, Sloan E. Gas storage in structure H hydrates. Fluid Phase Equilib. 1998;150:383–92. https://doi.org/10.1016/S0378-3812(98)00338-0.

Klauda JB, Sandler SI. A fugacity model for gas hydrate phase equilibria. Ind Eng Chem Res. 2000;39(9):3377–86. https://doi.org/10.1021/ie000322b.

Kondori J, Zendehboudi S, James L. Evaluation of gas hydrate formation temperature for gas/water/salt/alcohol systems: utilization of extended UNIQUAC model and PC-SAFT equation of state. Ind Eng Chem Res. 2018;57(41):13833–55. https://doi.org/10.1021/acs.iecr.8b03011.

Kontogeorgis GM, Michelsen ML, Folas GK, Derawi S, von Solms N, Stenby EH. Ten years with the CPA (Cubic-Plus-Association) Equation of State. Part 1. Pure compounds and self-associating systems. Ind Eng Chem Res. 2006a;45(14):4855–68. https://doi.org/10.1021/ie051305v.

Kontogeorgis GM, Michelsen ML, Folas GK, Derawi S, von Solms N, Stenby EH. Ten years with the CPA (Cubic-Plus-Association) Equation of State. Part 2. Cross-Associating and multicomponent systems. Ind Eng Chem Res. 2006b;45(14):4869–78. https://doi.org/10.1021/ie051306n.

Kubota H, Shimizu K, Tanaka Y, Makita T. Thermodynamic properties of R13 (CClF3), R23 (CHF3), R152a (C2H4F2), and propane hydrates for desalination of sea water. J Chem Eng Jpn. 1984;17(4):423–9. https://doi.org/10.1252/jcej.17.423.

Kvenvolden KA. Gas hydrates as a potential energy resource—a review of their methane content. U. S. Geol Surv. 1993;1570:555–61.

Kvenvolden K. A primer on the geological occurrence of gas hydrate. Spec Publ Geol Soc Lond. 1998;137(1):9–30. https://doi.org/10.1144/GSL.SP.1998.137.01.02.

Lee H, Lee J, Park J, Seo Y-T, Zeng H, Moudrakovski IL, et al. Tuning clathrate hydrates for hydrogen storage. Nature. 2005;434(7034):743–6. https://doi.org/10.1142/9789814317665_0042.

Lee Y-J, Kawamura T, Yamamoto Y, Yoon J-H. Phase equilibrium studies of tetrahydrofuran (THF) + CH4, THF + CO2, CH4 + CO2, and THF + CO2 + CH4 hydrates. J Chem Eng Data. 2012;57(12):3543–8. https://doi.org/10.1021/je300850q.

Li X-S, Wu H-J, Englezos P. Prediction of gas hydrate formation conditions in the presence of methanol, glycerol, ethylene glycol, and triethylene glycol with the statistical associating fluid theory equation of state. Ind Eng Chem Res. 2006;45(6):2131–7. https://doi.org/10.1021/ie051204x.

Liang D, Guo K, Wang R, Fan S. Hydrate equilibrium data of 1, 1, 1, 2-tetrafluoroethane (HFC-134a), 1, 1-dichloro-1-fluoroethane (HCFC-141b) and 1, 1-difluoroethane (HFC-152a). Fluid Phase Equilib. 2001;187:61–70. https://doi.org/10.1016/S0378-3812(01)00526-X.

Ma Q-L, Chen G-J, Sun C-Y, Yang L-Y, Liu B. Predictions of hydrate formation for systems containing hydrogen. Fluid Phase Equilib. 2013;358:290–5. https://doi.org/10.1016/j.fluid.2013.08.019.

Ma ZW, Zhang P, Bao HS, Deng S. Review of fundamental properties of CO2 hydrates and CO2 capture and separation using hydration method. Renew Sustain Energy Rev. 2016;53:1273–302. https://doi.org/10.1016/j.rser.2015.09.076.

Mahabadian MA, Chapoy A, Burgass R, Tohidi B. Development of a multiphase flash in presence of hydrates: experimental measurements and validation with the CPA equation of state. Fluid Phase Equilib. 2016;414:117–32. https://doi.org/10.1016/j.fluid.2016.01.009.

Makogon Y, Holditch S, Makogon T. Natural gas-hydrates—a potential energy source for the 21st century. J Pet Sci Eng. 2007;56(1):14–31. https://doi.org/10.1016/j.petrol.2005.10.009.

Martín Á, Peters CJ. Hydrogen storage in sH clathrate hydrates: thermodynamic model. J Phys Chem B. 2009;113(21):7558–63. https://doi.org/10.1021/jp8074578.

McKoy V, Sinanoğlu O. Theory of dissociation pressures of some gas hydrates. J Chem Phys. 1963;38(12):2946–56. https://doi.org/10.1063/1.1733625.

Menezes DÉSD, Ralha TW, Franco LFM, Pessôa Filho PDA, Fuentes MDR. Simulation and experimental study of methane-propane hydrate dissociation by high pressure differential scanning calorimetry. Braz J Chem Eng. 2018;35:403–14. https://doi.org/10.1590/0104-6632.20180352s20160329.

Milkov AV. Global estimates of hydrate-bound gas in marine sediments: how much is really out there? Earth-Sci Rev. 2004;66(3):183–97. https://doi.org/10.1016/j.earscirev.2003.11.002.

Moeini H, Bonyadi M, Esmaeilzadeh F, Rasoolzadeh A. Experimental study of sodium chloride aqueous solution effect on the kinetic parameters of carbon dioxide hydrate formation in the presence/absence of magnetic field. J Nat Gas Sci Eng. 2017;50:231–9. https://doi.org/10.1016/j.jngse.2017.12.012.

Mohammadi AH, Richon D. Gas hydrate phase equilibrium in the presence of ethylene glycol or methanol aqueous solution. Ind Eng Chem Res. 2010;49(18):8865–9. https://doi.org/10.1021/ie100908d.

Mohammadi AH, Belandria V, Richon D. Can toluene or xylene form clathrate hydrates? Ind Eng Chem Res. 2009a;48(12):5916–8. https://doi.org/10.1021/ie900362v.

Mohammadi AH, Kraouti I, Richon D. Methane hydrate phase equilibrium in the presence of NaBr, KBr, CaBr2, K2CO3, and MgCl2 aqueous solutions: experimental measurements and predictions of dissociation conditions. J Chem Thermodyn. 2009b;41(6):779–82. https://doi.org/10.1016/j.jct.2009.01.004.

Mooijer-van den Heuvel MM, Witteman R, Peters CJ. Phase behaviour of gas hydrates of carbon dioxide in the presence of tetrahydropyran, cyclobutanone, cyclohexane and methylcyclohexane. Fluid Phase Equilib. 2001;182(1):97–110. https://doi.org/10.1016/S0378-3812(01)00384-3.

Müller EA, Gubbins KE. Molecular-based equations of state for associating fluids: a review of SAFT and related approaches. Ind Eng Chem Res. 2001;40(10):2193–211. https://doi.org/10.1021/ie000773w.

Nagata T, Tajima H, Yamasaki A, Kiyono F, Abe Y. An analysis of gas separation processes of HFC-134a from gaseous mixtures with nitrogen—Comparison of two types of gas separation methods, liquefaction and hydrate-based methods, in terms of the equilibrium recovery ratio. Sep Purif Technol. 2009;64(3):351–6. https://doi.org/10.1016/j.seppur.2008.10.023.

Ngema PT, Naidoo P, Mohammadi AH, Ramjugernath D. Phase stability conditions for clathrate hydrates formation in CO2 + (NaCl or CaCl2 or MgCl2) + Cyclopentane + Water systems: experimental measurements and thermodynamic modeling. J Chem Eng Data. 2019b;64:4638–46. https://doi.org/10.1021/acs.jced.8b00872.

Ohgaki K, Takano K, Sangawa H, Matsubara T, Nakano S. Methane exploitation by carbon dioxide from gas hydrates. Phase equilibria for CO2-CH4 mixed hydrate system. J Chem Eng Jpn. 1996;29(3):478–83. https://doi.org/10.1252/jcej.29.478.

Ohno H, Susilo R, Gordienko R, Ripmeester J, Walker VK. Interaction of antifreeze proteins with hydrocarbon hydrates. Chem Eur J. 2010;16(34):10409–17. https://doi.org/10.1002/chem.200903201.

Pahlavanzadeh H, Khanlarkhani M, Rezaei S, Mohammadi AH. Experimental and modelling studies on the effects of nanofluids (SiO2, Al2O3, and CuO) and surfactants (SDS and CTAB) on CH4 and CO2 clathrate hydrates formation. Fuel. 2019;253:1392–405. https://doi.org/10.1016/j.fuel.2019.05.010.

Papadimitriou NI, Tsimpanogiannis IN, Stubos AK, Martín A, Rovetto LJ, Florusse LJ, et al. Experimental and computational investigation of the sII binary He–THF hydrate. J Phys Chem B. 2011;115(6):1411–5. https://doi.org/10.1021/jp105451m.

Parrish WR, Prausnitz JM. Dissociation pressures of gas hydrates formed by gas mixtures. Ind Eng Chem Process Des Dev. 1972;11(1):26–35. https://doi.org/10.1021/i260041a006.

Partoon B, Javanmardi J. Effect of mixed thermodynamic and kinetic hydrate promoters on methane hydrate phase boundary and formation kinetics. J Chem Eng Data. 2013;58(3):501–9. https://doi.org/10.1021/je301153t.

Pauling L, Marsh RE. The structure of chlorine hydrate. Proc Natl Acad Sci. 1952;38(2):112–8. https://doi.org/10.1073/pnas.38.2.112.

Platteeuw J, Van der Waals J. Thermodynamic properties of gas hydrates II: phase equilibria in the system H2S–C3H3-H2O at − 3°C. Recl Trav Chim Pays-Bas. 1959;78(2):126–33. https://doi.org/10.1002/recl.19590780208.

Rod Burgass AC, Bahman Tohidi, editor. Experimental and modelling low temperature water content in multicomponent gas mixtures. In: 7th International Conference on Gas Hydrates July 2011; Edinburgh, Scotland, United Kingdom; 2011.

Ruppel C, Boswell R, Jones E. Scientific results from Gulf of Mexico gas hydrates Joint Industry Project Leg 1 drilling: introduction and overview. Mar Pet Geol. 2008;25(9):819–29. https://doi.org/10.1016/j.marpetgeo.2008.02.007.

Sabil KM, Witkamp G-J, Peters CJ. Estimations of enthalpies of dissociation of simple and mixed carbon dioxide hydrates from phase equilibrium data. Fluid Phase Equilib. 2010b;290(1):109–14. https://doi.org/10.1016/j.fluid.2009.07.006.

Sarshar M, Esmaeilzadeh F, Fathikaljahi J. Predicting the induction time of hydrate formation on a water droplet. Oil Gas Sci Technol. 2008;63:657–67. https://doi.org/10.2516/ogst:2008032.

Sarshar M, Esmaeilzadeh F, Fathikalajahi J. Study of capturing emitted CO2 in the form of hydrates in a tubular reactor. Chem Eng Commun. 2009;196(11):1348–65. https://doi.org/10.1080/00986440902900832.

Sarshar M, Esmaeilzadeh F, Fathikalajahi J. Induction time of hydrate formation in a flow loop. Theor Found Chem Eng. 2010a;44(2):201–5. https://doi.org/10.1134/s0040579510020119.

Sarshar M, Fathikalajahi J, Esmaeilzadeh F. Experimental and theoretical study of gas hydrate formation in a high-pressure flow loop. Can J Chem Eng. 2010b;88(5):751–7. https://doi.org/10.1002/cjce.20332.

Sfaxi IBA, Belandria V, Mohammadi AH, Lugo R, Richon D. Phase equilibria of CO2 + N2 and CO2 + CH4 clathrate hydrates: experimental measurements and thermodynamic modelling. Chem Eng Sci. 2012;84:602–11. https://doi.org/10.1016/j.ces.2012.08.041.

Sinehbaghizadeh S, Javanmardi J, Roosta A, Mohammadi AH. Estimation of the dissociation conditions and storage capacities of various sH clathrate hydrate systems using effective deterministic frameworks. Fuel. 2019;247:272–86. https://doi.org/10.1016/j.fuel.2019.01.189.

Sirino TH, Marcelino Neto MA, Bertoldi D, Morales REM, Sum AK. Multiphase flash calculations for gas hydrates systems. Fluid Phase Equilib. 2018;475:45–63. https://doi.org/10.1016/j.fluid.2018.07.029.

Sloan ED. Gas hydrates: review of physical/chemical properties. Energy Fuels. 1998;12(2):191–6. https://doi.org/10.1021/ef970164+.

Sloan ED. Fundamental principles and applications of natural gas hydrates. Nature. 2003;426(6964):353–63. https://doi.org/10.1038/nature02135.

Spencer DF, Currier RP. Methods of selectively separating CO2 from a multicomponent gaseous stream using CO2 hydrate promoters. Google Patents; 2002.

Sun Z-G, Fan S-S, Guo K-H, Shi L, Guo Y-K, Wang R-Z. Gas hydrate phase equilibrium data of cyclohexane and cyclopentane. J Chem Eng Data. 2002;47(2):313–5. https://doi.org/10.1021/je0102199.

Sun Z-G, Ma R, Wang R-Z, Guo K-H, Fa S-S. Experimental studying of additives effects on gas storage in hydrates. Energy Fuels. 2003a;17(5):1180–5. https://doi.org/10.1021/ef020191m.

Sun Z, Wang R, Ma R, Guo K, Fan S. Natural gas storage in hydrates with the presence of promoters. Energy Convers Manage. 2003b;44(17):2733–42. https://doi.org/10.1016/S0196-8904(03)00048-7.

Sun X, Nanchary N, Mohanty KK. 1-D modeling of hydrate depressurization in porous media. Transp Porous Media. 2005;58(3):315–38. https://doi.org/10.1007/s11242-004-1410-x.

Talaghat MR, Esmaeilzadeh F, Fathikaljahi J. Experimental and theoretical investigation of double gas hydrate formation in the presence or absence of kinetic inhibitors in a flow mini-loop apparatus. Chem Eng Technol. 2009b;32(5):805–19. https://doi.org/10.1002/ceat.200800601.

Tan SP, Adidharma H, Radosz M. Recent advances and applications of statistical associating fluid theory. Ind Eng Chem Res. 2008;47(21):8063–82. https://doi.org/10.1021/ie8008764.

Tang J, Zeng D, Wang C, Chen Y, He L, Cai N. Study on the influence of SDS and THF on hydrate-based gas separation performance. Chem Eng Res Des. 2013;91(9):1777–82. https://doi.org/10.1016/j.cherd.2013.03.013.

Tavasoli H, Feyzi F. Four phase hydrate equilibria of methane and carbon dioxide with heavy hydrate former compounds: experimental measurements and thermodynamic modeling. Korean J Chem Eng. 2016;33(8):2426–38. https://doi.org/10.1007/s11814-016-0110-x.

Tohidi B, Danesh A, Burgass RW, Todd AC. Equilibrium data and thermodynamic modelling of cyclohexane gas hydrates. Chem Eng Sci. 1996;51(1):159–63. https://doi.org/10.1016/0009-2509(95)00253-7.

Valderrama JO. A generalized Patel–Teja equation of state for polar and nonpolar fluids and their mixtures. J Chem Eng Jpn. 1990;23(1):87–91. https://doi.org/10.1252/jcej.23.87.

Van der Waals J, Platteeuw J. Clathrate solutions. Adv Chem Phys. 2007;2:1–57. https://doi.org/10.1002/9780470143483.ch1.

Waseem MS, Alsaifi NM. Prediction of vapor-liquid-hydrate equilibrium conditions for single and mixed guest hydrates with the SAFT-VR Mie EoS. J Chem Thermodyn. 2018;117:223–35. https://doi.org/10.1016/j.jct.2017.09.032.

Wong DSH, Sandler SI. A theoretically correct mixing rule for cubic equations of state. AIChE J. 1992;38(5):671–80. https://doi.org/10.1002/aic.690380505.

Yamamoto K, Nakatsuka Y, Sato R, Kvalstad T, Qiu K, Birchwood R. Geohazard risk evaluation and related data acquisition and sampling program for the methane hydrate offshore production test. Frontiers in Offshore Geotechnics III. 2015;1:173.

Youssef Z, Barreau A, Mougin P, Jose J, Mokbel I. Measurements of hydrate dissociation temperature of methane, ethane, and CO2 in the absence of any aqueous phase and prediction with the cubic plus association equation of state. Ind Eng Chem Res. 2009;48(8):4045–50. https://doi.org/10.1021/ie801351e.

Zhang S-X, Chen G-J, Ma C-F, Yang L-Y, Guo T-M. Hydrate formation of hydrogen + hydrocarbon gas mixtures. J Chem Eng Data. 2000;45(5):908–11. https://doi.org/10.1021/je000076a.

Zhang Y, Debenedetti PG, Prud’homme RK, Pethica BA. Accurate prediction of clathrate hydrate phase equilibria below 300 K from a simple model. J Pet Sci Eng. 2006;51(1):45–53. https://doi.org/10.1016/j.petrol.2005.11.008.

Zhang L, Burgass R, Chapoy A, Tohidi B. Measurement and modeling of water content in low temperature hydrate–methane and hydrate–natural gas systems. J Chem Eng Data. 2011;56(6):2932–5. https://doi.org/10.1021/je2001655.

Zhong DL, Li Z, Lu YY, Wang JL, Yan J. Evaluation of CO2 removal from a CO2 + CH4 gas mixture using gas hydrate formation in liquid water and THF solutions. Appl Energy. 2015;158:133–41. https://doi.org/10.1016/j.apenergy.2015.08.058.

Zhong DL, Wang JL, Lu YY, Li Z, Yan J. Precombustion CO2 capture using a hybrid process of adsorption and gas hydrate formation. Energy. 2016;102:621–9. https://doi.org/10.1016/j.energy.2016.02.135.

Zuo YX, Gommesen S, Guo TM. Equation of state based hydrate model for natural gas systems containing brine and polar inhibitor. Chin J Chem Eng. 1996;4(3):189–202.