Adjacent segment degeneration after fusion spinal surgery—a systematic review

International Orthopaedics - Tập 43 - Trang 987-993 - 2018
Ko Hashimoto1,2, Toshimi Aizawa1, Haruo Kanno1, Eiji Itoi1
1Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
2Department of Orthopaedic Surgery, Takeda General Hospital, Aizu-Wakamatsu, Japan

Tóm tắt

Adjacent segment degeneration (ASDeg) and disease (ASDis) have become major concerns after fusion surgery. However, there is no definitive data or knowledge about the incidence or risk factors. The review discusses the incidence and risk factors and prevention of ASDeg and ASDis in the relevant literature. We performed a systematic review of meta-analyses, randomized control trials, and cohort studies published in English to provide evidence-based information about ASDeg and ASDis. According to a meta-analysis, the pooled incidence of ASDeg after lumbar and cervical fusion surgery was 26.6% and 32.8%, respectively. Approximately 1/4–1/3 of ASDeg progressed to ASDis. Risk factors after cervical fusion surgery were young age, pre-existing disc degeneration, short fusion segment, high T1 slope, disruption of adjacent soft tissue, and plate placement close to the adjacent disc. The risk factors of ASDeg and ASDis after lumbar fusion surgery were age, genetic factors, high body mass index, pre-existing adjacent segment degeneration, laminectomy at the adjacent level of fusion, excessive distraction of the fusion level, insufficient lumbar lordosis, multilevel fixation, floating fusion, coronal wedging of L5-S disc, pelvic tilt, and osteoporosis. Motion-preserving surgeries seem to have less risk of ASDeg and ASDis than conventional fusion surgery both in the lumbar and cervical spine. The existent literature points out variables involved in ASDeg and ASDis. High evidence-level studies should provide more relevant data to guide strategies for avoiding ASDeg and ASDis.

Tài liệu tham khảo

Anakwenze OA, Auerbach JD, Milby AH, Lonner BS, Balderston RA (2009) Sagittal cervical alignment after cervical disc arthroplasty and anterior cervical discectomy and fusion: results of a prospective, randomized, controlled trial. Spine (Phila Pa 1976) 34(19):2001–2007

Kelly MP, Mok JM, Frisch RF, Tay BK (2011) Adjacent segment motion after anterior cervical discectomy and fusion versus Prodisc-c cervical total disk arthroplasty: analysis from a randomized, controlled trial. Spine (Phila Pa 1976) 36(15):1171–1179

Xia XP, Chen HL, Cheng HB (2013) Prevalence of adjacent segment degeneration after spine surgery: a systematic review and meta-analysis. Spine (Phila Pa 1976) 38(7):597–608

Boos N, Rieder R, Schade V, Spratt KF, Semmer N, Aebi M (1995) 1995 Volvo award in clinical sciences. The diagnostic accuracy of magnetic resonance imaging, work perception, and psychosocial factors in identifying symptomatic disc herniations. Spine (Phila Pa 1976) 20(24):2613–2625

Bydon M, Macki M, De la Garza-Ramos R, McGovern K, Sciubba DM, Wolinsky JP, Witham TF, Gokaslan ZL, Bydon A (2016) Incidence of adjacent segment disease requiring reoperation after lumbar laminectomy without fusion: a study of 398 patients. Neurosurgery 78(2):192–199

Cunningham BW, Kotani Y, McNulty PS, Cappuccino A, McAfee PC (1997) The effect of spinal destabilization and instrumentation on lumbar intradiscal pressure: an in vitro biomechanical analysis. Spine (Phila Pa 1976) 22(22):2655–2663

Weinhoffer SL, Guyer RD, Herbert M, Griffith SL (1995) Intradiscal pressure measurements above an instrumented fusion. A cadaveric study. Spine (Phila Pa 1976) 20(5):526–531

Lawrence BD, Wang J, Arnold PM, Hermsmeyer J, Norvell DC, Brodke DS (2012) Predicting the risk of adjacent segment pathology after lumbar fusion: a systematic review. Spine (Phila Pa 1976) 37(22 Suppl):S123–S132

Kretzer RM, Hsu W, Hu N, Umekoji H, Jallo GI, McAfee PC, Tortolani PJ, Cunningham BW (2012) Adjacent-level range of motion and intradiscal pressure after posterior cervical decompression and fixation: an in vitro human cadaveric model. Spine (Phila Pa 1976) 37(13):E778–E785

Matsumoto M, Okada E, Ichihara D, Watanabe K, Chiba K, Toyama Y, Fujiwara H, Momoshima S, Nishiwaki Y, Iwanami A, Ikegami T, Takahata T, Hashimoto T (2010) Anterior cervical decompression and fusion accelerates adjacent segment degeneration: comparison with asymptomatic volunteers in a ten-year magnetic resonance imaging follow-up study. Spine (Phila Pa 1976) 35(1):36–43

Lawrence BD, Hilibrand AS, Brodt ED, Dettori JR, Brodke DS (2012) Predicting the risk of adjacent segment pathology in the cervical spine: a systematic review. Spine (Phila Pa 1976) 37(22 Suppl):S52–S64

Nassr A, Lee JY, Bashir RS, Rihn JA, Eck JC, Kang JD, Lim MR (2009) Does incorrect level needle localization during anterior cervical discectomy and fusion lead to accelerated disc degeneration? Spine (Phila Pa 1976) 34(2):189–192

Imagama S, Kawakami N, Matsubara Y, Tsuji T, Ohara T, Katayama Y, Ishiguro N, Kanemura T (2016) Radiographic adjacent segment degeneration at 5 years after L4/5 posterior lumbar interbody fusion with pedicle screw instrumentation: evaluation by computed tomography and annual screening with magnetic resonance imaging. Clin Spine Surg 29(9):E442–E451