A continuous system for biocatalytic hydrogenation of CO2 to formate

Elsevier BV - Tập 235 - Trang 149-156 - 2017
Cláudia Mourato1, Mónica Martins1, Sofia M. da Silva1, Inês A.C. Pereira1
1Instituto de Tecnologia Química e Biológica António Xavier/Universidade Nova de Lisboa (ITQB NOVA), Av. da Republica-EAN, 2780-157 Oeiras, Portugal

Tài liệu tham khảo

Alissandratos, 2014, Formate production through carbon dioxide hydrogenation with recombinant whole cell biocatalysts, Bioresour. Technol., 164, 7, 10.1016/j.biortech.2014.04.064

Aresta, 2016, State of the art and perspectives in catalytic processes for CO2 conversion into chemicals and fuels: the distinctive contribution of chemical catalysis and biotechnology, J. Catal., 343, 2, 10.1016/j.jcat.2016.04.003

Boddien, 2011, CO2 – “neutral” hydrogen storage based on bicarbonates and formates, Angew. Chem., 50, 6411, 10.1002/anie.201101995

Caffrey, 2007, Function of periplasmic hydrogenases in the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough, J. Bacteriol., 189, 6159, 10.1128/JB.00747-07

Christensen, 2015, Rex (encoded by DVU_0916) in Desulfovibrio vulgaris Hildenborough is a repressor of sulfate adenylyl transferase and is regulated by NADH, J. Bacteriol., 197, 29, 10.1128/JB.02083-14

Costa, 1997, Formate dehydrogenase from Desulfovibrio desulfuricans ATCC 27774: isolation and spectroscopic characterization of the active sites (heme, iron-sulfur centers and molybdenum), J. Biol. Inorg. Chem., 2, 198, 10.1007/s007750050125

da Silva, 2011, Tungsten and molybdenum regulation of formate dehydrogenase expression in Desulfovibrio vulgaris Hildenborough, J. Bacteriol., 193, 2909, 10.1128/JB.00042-11

da Silva, 2013, Function of formate dehydrogenases in Desulfovibrio vulgaris Hildenborough energy metabolism, Microbiology, 159, 1760, 10.1099/mic.0.067868-0

Enthaler, 2010, Carbon dioxide and formic acid—the couple for environmental-friendly hydrogen storage?, Energy Environ. Sci., 3, 1207, 10.1039/b907569k

Hartmann, 2013, The oxygen-tolerant and NAD+-dependent formate dehydrogenase from Rhodobacter capsulatus is able to catalyze the reduction of CO2 to formate, FEBS J., 280, 6083, 10.1111/febs.12528

Hartmann, 2015, Assembly and catalysis of molybdenum or tungsten-containing formate dehydrogenases from bacteria, Biochim. Biophys. Acta, 1854, 1090, 10.1016/j.bbapap.2014.12.006

Hwang, 2015, Electro-biocatalytic production of formate from carbon dioxide using an oxygen-stable whole cell biocatalyst, Bioresour. Technol., 185, 35, 10.1016/j.biortech.2015.02.086

Li, 2009, A molybdopterin oxidoreductase is involved in H2 oxidation in Desulfovibrio desulfuricans G20, J. Bacteriol., 191, 2675, 10.1128/JB.01814-08

Lubitz, 2014, Hydrogenases, Chem. Rev., 114, 4081, 10.1021/cr4005814

Martins, 2013, Sulfate-reducing bacteria as new microorganisms for biological hydrogen production, Int. J. Hydrogen Energy, 38, 12294, 10.1016/j.ijhydene.2013.07.044

Martins, 2015, Desulfovibrio vulgaris growth coupled to formate-driven H2 production, Environ. Sci. Technol., 49, 14655, 10.1021/acs.est.5b02251

Martins, 2016, Electron transfer pathways of formate-driven H2 production in Desulfovibrio, Appl. Microbiol. Biotechnol., 100, 8135, 10.1007/s00253-016-7649-7

Matias, 2005, Sulphate respiration from hydrogen in Desulfovibrio bacteria: a structural biology overview, Prog. Biophys. Mol. Biol., 89, 292, 10.1016/j.pbiomolbio.2004.11.003

McDowall, 2014, Bacterial formate hydrogenlyase complex, Proc. Natl. Acad. Sci. U.S.A., 111, E3948, 10.1073/pnas.1407927111

Mota, 2011, Effects of molybdate and tungstate on expression levels and biochemical characteristics of formate dehydrogenases produced by Desulfovibrio alaskensis NCIMB 13491, J. Bacteriol., 193, 2917, 10.1128/JB.01531-10

Pereira, 2013, An enzymatic route to H2 storage, Science, 342, 1329, 10.1126/science.1247698

Pereira, 2008, Energy metabolism in Desulfovibrio vulgaris Hildenborough: insights from transcriptome analysis, Antonie Van Leeuwenhoek, 93, 347, 10.1007/s10482-007-9212-0

Pereira, 2011, A comparative genomic analysis of energy metabolism in sulfate reducing bacteria and archaea, Front. Microbiol., 2, 1, 10.3389/fmicb.2011.00069

Pinske, 2016, Exploring the directionality of Escherichia coli formate hydrogenlyase: a membrane-bound enzyme capable of fixing carbon dioxide to organic acid, Microbiol. Open, 5, 721, 10.1002/mbo3.365

Pohorelic, 2002, Effects of deletion of genes encoding Fe-only hydrogenase of Desulfovibrio vulgaris hildenborough on hydrogen and lactate metabolism, J. Bacteriol., 184, 679, 10.1128/JB.184.3.679-686.2002

Reddy, K.J., Gilman, M., 2001. Preparation of bacterial RNA, in: Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., Struhl, K. (Eds.), Current Protocols in Molecular Biology, John Wiley & Sons Inc, Hoboken, NJ, USA, pp. 4.4.1–4.4.7.

Sawers, 2005, Formate and its role in hydrogen production in Escherichia coli, Biochem. Soc. Trans., 33, 42, 10.1042/BST0330042

Schuchmann, 2013, Direct and reversible hydrogenation of CO2 to formate by a bacterial carbon dioxide reductase, Science, 342, 1382, 10.1126/science.1244758

Sternberg, 2015, Power-to-what? – Environmental assessment of energy storage systems, Energy Environ. Sci., 8, 389, 10.1039/C4EE03051F

Yishai, 2016, The formate bio-economy, Curr. Opin. Chem. Biol., 35, 1, 10.1016/j.cbpa.2016.07.005

Yuan, 2016, Toward the development and deployment of large-scale carbon dioxide capture and conversion processes, Ind. Eng. Chem. Res., 55, 3383, 10.1021/acs.iecr.5b03277