Direct synthesis of formic acid from carbon dioxide by hydrogenation in acidic media

Nature Communications - Tập 5 Số 1
Séverine Moret1, Paul J. Dyson1, Gábor Laurenczy1
1Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

Tóm tắt

Từ khóa


Tài liệu tham khảo

Mauna Loa Observatory, Hawaii http://co2now.org/ (2014).

Tollefson, J. Growing agricultural benefits for climate. Nature 462, 966–967 (2009).

Aresta, M. Carbon Dioxide Recovery and Utilization Kluwer Academic Publishers: Dordrecht, (2010).

Metz, B., Davidson, O., De Coninck, H., Loos, M. & Meyer, L. Carbon Dioxide Capture and Storage Cambridge University Press: Cambridge UK, (2005).

Dzubak, A. L. et al. L. Ab initio carbon capture in open-site metal-organic frameworks. Nat. Chem. 4, 810–816 (2012).

Lin, L.-C. et al. In silico screening of carbon-capture materials. Nat. Mater 11, 633–641 (2012).

Balaraman, E., Gunanathan, C., Zhang, J., Shimon, L. J. W. & Milstein, D. Efficient hydrogenation of organic carbonates, carbamates and formates indicates alternative routes to methanol based on CO2 and CO. Nat. Chem. 3, 609–614 (2011).

Centi, G. & Perathoner, S. Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catal. Today 148, 191–205 (2009).

Carbon Recycling International http://cri.is/ (2013).

Aresta, M. & Dibenedetto, A. Utilisation of CO2 as a chemical feedstock: opportunities and challenges. Dalton Trans. 2975–2992 (2007).

Schlapbach, L. & Züttel, A. Hydrogen-storage materials for mobile applications. Nature 414, 353–358 (2001).

Dalebrook, A. F., Gan, W., Grasemann, M., Moret, S. & Laurenczy, G. Hydrogen storage: beyond conventional methods. Chem. Commun. 49, 8735–8751 (2013).

Enthaler, S., von Langermann, J. & Schmidt, T. Carbon dioxide and formic acid-the couple for environmental-friendly hydrogen storage? Energy Environ. Sci. 3, 1207–1217 (2010).

Joo, F. Breakthroughs in Hydrogen Storage-Formic Acid as a Sustainable Storage Material for Hydrogen. ChemSusChem 1, 805–808 (2008).

Grasemann, M. & Laurenczy, G. Formic acid as a hydrogen source -recent developments and future trends. Energy Environ. Sci. 5, 8171–8181 (2012).

Barnard, J. H., Wang, C., Berry, N. G. & Xiao, J. L. Long-range metal-ligand bifunctional catalysis: cyclometallated iridium catalysts for the mild and rapid dehydrogenation of formic acid. Chem. Sci. 4, 1234–1244 (2013).

Boddien, A. et al. Efficient dehydrogenation of formic acid using an iron catalyst. Science 333, 1733–1736 (2011).

Federsel, C., Jackstell, R. & Beller, M. State-of-the-art catalysts for hydrogenation of carbon dioxide. Angew. Chem. Int. Ed. 49, 6254–6257 (2010).

Jessop, P. G., Joo, F. & Tai, C. C. Recent advances in the homogeneous hydrogenation of carbon dioxide. Coord. Chem. Rev. 248, 2425–2442 (2004).

Jessop, P. G., Ikariya, T. & Noyori, R. Homogeneous catalytic hydrogenation of supercritical carbon dioxide. Nature 368, 231–233 (1994).

Leitner, W. Carbon dioxide as a raw material the synthesis of formic acid and its derivatives from CO2 . Angew. Chem. Int. Ed. 34, 2207–2221 (1995).

Jessop, P. G. inHandbook of Homogeneous Hydrogenation 489–511Wiley-VCH: Weinheim, (2007).

Tanaka, R., Yamashita, M. & Nozaki, K. Catalytic hydrogenation of carbon dioxide using Ir(III)-pincer complexes. J. Am. Chem. Soc. 131, 14168–14169 (2009).

Papp, G., Csorba, J., Laurenczy, G. & Joó, F. A charge/discharge device for chemical hydrogen storage and generation. Angew. Chem. Int. Ed. 50, 10433–10435 (2011).

Hull, J. F. et al. Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures. Nat. Chem. 4, 383–388 (2012).

Boddien, A. et al. Towards the development of a hydrogen battery. Energy Environ. Sci. 5, 8907–8911 (2012).

Laurenczy, G., Joo, F. & Nadasdi, L. Formation and characterization of water-soluble hydrido-ruthenium(II) complexes of 1,3,5-triaza-7-phosphaadamantane and their catalytic activity in hydrogenation of CO2 and HCO3− in aqueous solution. Inorg. Chem. 39, 5083–5088 (2000).

Preti, D., Squarcialupi, S. & Fachinetti, G. Production of HCOOH/NEt3 adducts by CO2/H2 incorporation into neat NEt3 . Angew. Chem. Int. Ed. 49, 2581–2584 (2010).

Tai, C. C., Chang, T., Roller, B. & Jessop, P. G. High-pressure combinatorial screening of homogeneous catalysts: hydrogenation of carbon dioxide. Inorg. Chem. 42, 7340–7341 (2003).

Schaub, T. & Paciello, R. A. A process for the synthesis of formic acid by CO2 hydrogenation: thermodynamic aspects and the role of CO. Angew. Chem. Int. Ed. 50, 7278–7282 (2011).

Zhao, G. Y. & Joo, F. Free formic acid by hydrogenation of carbon dioxide in sodium formate solutions. Catal. Commun. 14, 74–76 (2011).

Joszai, I. & Joo, F. Hydrogenation of aqueous mixtures of calcium carbonate and carbon dioxide using a water-soluble rhodium(I)–tertiary phosphine complex catalyst. J. Mol. Catal. A Chem. 224, 87–91 (2004).

Graf, E. & Leitner, W. Direct formation of formic acid from carbon dioxide and dihydrogen using the [{Rh(cod)Cl}2]-Ph2P(CH2)4PPh2 catalyst system. J. Chem. Soc. Chem. Commun. 623–624 (1992).

Ogo, S., Hayashi, H. & Fukuzumi, S. Aqueous hydrogenation of carbon dioxide catalysed by water-soluble ruthenium aqua complexes under acidic conditions. Chem. Commun. 2714–2715 (2004).

Ogo, S., Kabe, R., Hayashi, H., Harada, R. & Fukuzumi, S. Mechanistic investigation of CO2 hydrogenation by Ru(II) and Ir(III) aqua complexes under acidic conditions: two catalytic systems differing in the nature of the rate determining step. Dalton Trans. 4657–4663 (2006).

Wesselbaum, S., Hintermair, U. & Leitner, W. Continuous-flow hydrogenation of carbon dioxide to pure formic acid using an integrated scCO2 process with immobilized catalyst and base. Angew. Chem. Int. Ed. 51, 8585–8588 (2012).

Laurenczy, G., Jedner, S., Alessio, E. & Dyson, P. J. In situ NMR characterisation of an intermediate in the catalytic hydrogenation of CO2 and HCO3− in aqueous solution. Inorg. Chem. Commun. 10, 558–562 (2007).

Fellay, C., Dyson, P. J. & Laurenczy, G. A viable hydrogen-storage system based on selective formic acid decomposition with a ruthenium catalyst. Angew. Chem. Int. Ed. 47, 3966–3968 (2008).

Fellay, C., Yan, N., Dyson, P. J. & Laurenczy, G. Selective formic acid decomposition for high-pressure hydrogen generation: a mechanistic study. Chem. Eur. J. 15, 3752–3760 (2009).

Gan, W., Dyson, P. J. & Laurenczy, G. Heterogeneous silica-supported ruthenium phosphine catalysts for selective formic acid decomposition. ChemCatChem 5, 3124–3130 (2013).

Daigle, D. J., Pepperman, A. B. & Vail, S. L. Synthesis of a monophosphorus analog of hexamethylenetetramine. J. Heterocycl. Chem. 11, 407–408 (1974).

Daigle, D. J. & Pepperman, A. B. Chemical proof for preferred nitrogen quarternization in 1,3,5-triaza-7-phosphaadamantane. J. Heterocycl. Chem. 12, 579–580 (1975).

Darensbourg, D. J. et al. Water-soluble organometallic compounds 4. Catalytic-hydrogenation of aldehydes in an aqueous two-phase solvent system using a 1,3,5-triaza-7-phosphaadamantane complex of ruthenium. Inorg. Chem. 33, 200–208 (1994).

Darensbourg, D. J., Joo, F., Kannisto, M., Katho, A. & Reibenspies, J. H. Water-soluble organometallic compounds.2. catalytic-hydrogenation of aldehydes and olefins by new water-soluble 1,3,5-triaza-7-phosphaadamantane complexes of ruthenium and rhodium. Organometallics 11, 1991–1993 (1992).

Joó, F. et al. (Meta-sulfonatophenyl)diphenylphosphine, sodium salt and its complexes with rhodium(I), ruthenium(II), iridium(I). Inorg. Synth. 32, 1–8 (1998).

Serli, B. et al. Is the aromatic fragment of piano-stool ruthenium compounds an essential feature for anticancer activity? The development of new RuII-[9]aneS3 analogues. Eur. J. Inorg. Chem. 3423–3434 (2005).

Bennett, M. A. & Smith, A. K. Arene ruthenium(II) complexes formed by dehydrogenation of cyclohexadienes with ruthenium(III) trichloride. J. Chem. Soc. Dalton 233–241 (1974).

Gandolfi, C., Heckenroth, M., Neels, A., Laurenczy, G. & Albrecht, M. Chelating NHC ruthenium(II) complexes as robust homogeneous hydrogenation catalysts. Organometallics 28, 5112–5121 (2009).

Pruchnik, F. P., Smoleński, P., Galdecka, E. & Galdecki, Z. Structural, spectroscopic and catalytic properties of water-soluble hydride rhodium complexes [RhH(Rtpa+I−)4]H2O (R=Me, Et). Inorg. Chim. Acta 293, 110–114 (1999).

Kovacs, J., Joo, F., Benyei, A. C. & Laurenczy, G. Reactions of [Ru(H2O)6]2+ with water-soluble tertiary phosphines. Dalton Trans. 2336–2340 (2004).

Moret, S., Dyson, P. J. & Laurenczy, G. Direct, in situ determination of pH and solute concentrations in formic acid dehydrogenation and CO2 hydrogenation in pressurised aqueous solutions using 1H and 13C NMR spectroscopy. Dalton Trans. 42, 4353–4356 (2013).

Symons, E. A. Hydrogen gas solubility in the dimethylsulfoxide - water system: a further clue to solvent structure in these media. Can. J. Chem. 49, 3940–3947 (1971).

Dyson, P. J., Laurenczy, G., Ohlin, C. A., Vallance, J. & Welton, T. Determination of hydrogen concentration in ionic liquids and the effect (or lack of) on rates of hydrogenation. Chem. Commun. 2418–2419 (2003).