Incorporation of either molybdenum or tungsten into formate dehydrogenase from Desulfovibrio alaskensis NCIMB 13491; EPR assignment of the proximal iron-sulfur cluster to the pterin cofactor in formate dehydrogenases from sulfate-reducing bacteria

Carlos D. Brondino1,2, Mario C. G. Passeggi1,3, Jorge Caldeira2, Maria J. Almendra2, Maria J. Feio4,5, Jose J. G. Moura2, Isabel Moura2
1Departamento de Física, Facultad de Bioquímica y Ciencias Biologicas, Universidad Nacional del Litoral, Santa Fe, Argentina
2REQUIMTE, Departamento de Química, Centro de Química Fisica e Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
3Instituto de Desarrollo Tecnologico (UNL-CONICET), Santa Fe, Argentina
4School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
5Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Científicas Isla de la Cartuja, Seville, Spain

Tóm tắt

We report the characterization of the molecular properties and EPR studies of a new formate dehydrogenase (FDH) from the sulfate-reducing organism Desulfovibrio alaskensis NCIMB 13491. FDHs are enzymes that catalyze the two-electron oxidation of formate to carbon dioxide in several aerobic and anaerobic organisms. D. alaskensis FDH is a heterodimeric protein with a molecular weight of 126±2 kDa composed of two subunits, α=93±3 kDa and β=32±2 kDa, which contains 6±1 Fe/molecule, 0.4±0.1 Mo/molecule, 0.3±0.1 W/molecule, and 1.3±0.1 guanine monophosphate nucleotides. The UV-vis absorption spectrum of D. alaskensis FDH is typical of an iron-sulfur protein with a broad band around 400 nm. Variable-temperature EPR studies performed on reduced samples of D. alaskensis FDH showed the presence of signals associated with the different paramagnetic centers of D. alaskensis FDH. Three rhombic signals having g-values and relaxation behavior characteristic of [4Fe-4S] clusters were observed in the 5–40 K temperature range. Two EPR signals with all the g-values less than two, which accounted for less than 0.1 spin/protein, typical of mononuclear Mo(V) and W(V), respectively, were observed. The signal associated with the W(V) ion has a larger deviation from the free electron g-value, as expected for tungsten in a d1 configuration, albeit with an unusual relaxation behavior. The EPR parameters of the Mo(V) signal are within the range of values typically found for the slow-type signal observed in several Mo-containing proteins belonging to the xanthine oxidase family of enzymes. Mo(V) resonances are split at temperatures below 50 K by magnetic coupling with one of the Fe/S clusters. The analysis of the inter-center magnetic interaction allowed us to assign the EPR-distinguishable iron-sulfur clusters with those seen in the crystal structure of a homologous enzyme.

Từ khóa


Tài liệu tham khảo

Hille R (1996) Chem Rev 96:2757–2816

Johnson MK, Rees DC, Adams MWW (1996) Chem Rev 96:2817–2839

Romão MJ, Knäblein J, Huber R, Moura JJG (1997) Prog Biophys Mol Biol 68:121–144

Almendra MJ, Brondino CD, Gavel O, Pereira AS, Tavares P, Bursakov S, Duarte R, Caldeira J, Moura JJG, Moura I (1999) Biochemistry 38:16366–16372

de Bok FAM, Hagedoorn PL, Silva PJ, Hagen WR, Schiltz E, Fritsche K, Stams E, Fritsche K, Stams AJM (2003) Eur J Biochem 270:2476–2485

Costa C, Teixeira M, LeGall J, Moura JJG, Moura I (1997) J Biol Inorg Chem 2:198–208

George GN, Costa C, Moura JJG, Moura I (1999) J Am Chem Soc 121:2625–2626

Raaijmakers H, Teixeira S, Dias JM, Almendra MJ, Brondino CD, Moura I, Moura JJG, Romão MJ (2001) J Biol Inorg Chem 6:398–404

Raaijmakers H, Macieira S, Dias JM, Teixeira S, Bursakov S, Huber R, Moura JJ, Moura I, Romao MJ (2002) Structure 10:1261–1272

Dias JM, Than ME, Humm A, Huber R, Bourenkov GP, Bartunik HD, Bursakov S, Calvete J, Caldeira J, Carneiro C, Moura JJG, Moura I, Romão MJ (1999) Structure 7:65–77

Boyington JC, Gladyshev VN, Khangulov SV, Stadtman TC, Sun PD (1997) Science 275:1305–1308

Bursakov SA, Liu MY, Payne WJ, LeGall J, Moura I, Moura JJG (1995) Anaerobe 1:55–60

Khangulov SV, Gladyshev VN, Dismukes GC, Stadtman TC (1998) Biochemistry 37:3518–3528

Feio MJ (2000) PhD thesis. University of Portsmouth, UK

Postgate JR, Kent HM, Robson RL, Chesshyre JA (1984) J Gen Microbiol 130:1597–1601

Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) J Biol Chem 193:265–273

Gremer L, Meyer O (1996) Eur J Biochem 238:862–866

Frunzke K, Heiss B, Meyer O, Zumft WG (1993) FEMS Microbiol Lett 113:241–246

Atherton MM (1973) Electron spin resonance: theory and applications. Wiley, New York

Salikhov KM, Galeev RT, Voronkova VK, Yablokov YV, Legendziewicz J (1997) Appl Magn Reson 14:457–472

Stewart LJ, Bailey S, Bennet B, Charnock JM, Garner CD, McAlpine AS (2000) J Mol Biol 299:593–600

Deaton JC, Solomon EI, Watt GD, Wetherbee PJ, Durfor CN (1987) Biochem Biophys Res Commun 149:424–430

Turner N, Barata B, Bray RC, Deistung J, Le Gall J (1987) Biochem J 243:755–761

Romão MJ, Archer M, Moura I, Moura JJG, LeGall J, Engh R, Schneider M, Hof P, Huber R (1995) Science 167:1170–1176

Barnard KR, Gable RW, Wedd AG (1997) J Biol Inorg Chem 2:623–633

McAlpine AS, McEwan AG, Bailey S. (1998) J Mol Biol 275:613–623

Schneider F, Löwe J, Huber R, Schindelin H, Kisker C, Knäblein J (1996) J Mol Biol 263:53–69

Schindelin H, Kisker C, Hilton J, Rajagopalan KV, Rees DC (1996) Science 272:1615–1621

Abragam A (1961) The principles of nuclear magnetism. Oxford Univesity Press, Oxford

Hirchs DJ, Beck WF, Innes JB, Brudvig GW (1992) Biochemistry 31:532–541

Hirchs DJ, Beck WF, Lynch JB, Que L Jr, Brudvig GW (1992) J Am Chem Soc 114:7475–7481

Andrade SLA, Brondino CD, Feio MJ, Moura I, Moura JJG (2000) Eur J Biochem 267:2054–2061

Caldeira J, Belle V, Asso M, Guigliarelli B, Moura I, Moura JJG, Bertrand P (2000) Biochemistry 39:2700–2707

Bertrand P, Roger G, Gayda JP (1980) J Magn Reson 40:539–549

Pilbrow JR (1990) Transition ion electron paramagnetic resonance. Clarendon Press, Oxford

Gayda JP, Bertrand P, More C, Le Gall J, Cammack RC (1981) Biochem Biophys Res Commun 99:1265–1270