Biological conversion of carbon dioxide and hydrogen into liquid fuels and industrial chemicals

Current Opinion in Biotechnology - Tập 24 - Trang 376-384 - 2013
Aaron S Hawkins1, Patrick M McTernan2, Hong Lian1, Robert M Kelly1, Michael WW Adams2
1Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, United States
2Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, United States

Tài liệu tham khảo

Conrado, 2013, Electrofuels: a new paradigm for renewable fuels, 1037 Pearson, 2012, Energy storage via carbon-neutral fuels made from CO2, water, and renewable energy, Proc IEEE, 100, 440, 10.1109/JPROC.2011.2168369 Hawkins, 2011, Extremely thermophilic routes to microbial electrofuels, ACS Catal, 1, 1043, 10.1021/cs2003017 Lovley, 2013, Electrobiocommodities: powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity, Curr Opin Biotechnol, 24, 385, 10.1016/j.copbio.2013.02.012 Berg, 2010, Autotrophic carbon fixation in archaea, Nat Rev Microbiol, 8, 447, 10.1038/nrmicro2365 Berg, 2011, Ecological aspects of the distribution of different autotrophic CO2 fixation pathways, Appl Environ Microbiol, 77, 1925, 10.1128/AEM.02473-10 Fuchs, 2011, Alternative pathways of carbon dioxide fixation: insights into the early evolution of life?, Annu Rev Microbiol, 65, 631, 10.1146/annurev-micro-090110-102801 Hugler, 2011, Beyond the Calvin cycle: autotrophic carbon fixation in the ocean, Annu Rev Mar Sci, 3, 261, 10.1146/annurev-marine-120709-142712 Erb, 2011, Carboxylases in natural and synthetic microbial pathways, Appl Environ Microbiol, 77, 8466, 10.1128/AEM.05702-11 McKinlay, 2010, Carbon dioxide fixation as a central redox cofactor recycling mechanism in bacteria, Proc Natl Acad Sci U S A, 107, 11669, 10.1073/pnas.1006175107 Brigham, 2013, Engineering Ralstonia eutropha for production of isobutanol from CO2, H2, and O2, 1065 Yang, 2010, Optimization of growth media components for polyhydroxyalkanoate (PHA) production from organic acids by Ralstonia eutropha, Appl Microbiol Biotechnol, 87, 2037, 10.1007/s00253-010-2699-8 Brigham, 2011, Bacterial carbon storage to value added products, J Microb Biochem Technol S, S3, 1 Atsumi, 2008, Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels, Nature, 451, 86, 10.1038/nature06450 Lan, 2012, Microbial synthesis of n-butanol, isobutanol, and other higher alcohols from diverse resources, Bioresour Technol Higashide, 2011, Metabolic engineering of Clostridium cellulolyticum for production of isobutanol from cellulose, Appl Environ Microbiol, 77, 2727, 10.1128/AEM.02454-10 Li, 2012, Integrated electromicrobial conversion of CO2 to higher alcohols, Science, 335, 1596, 10.1126/science.1217643 Singer, 2013, Microbial electrocatalytic (MEC) biofuel production, 1091 Schiel-Bengelsdorf, 2012, Pathway engineering and synthetic biology using acetogens, FEBS Lett, 586, 2191, 10.1016/j.febslet.2012.04.043 Demler, 2010, Reaction engineering analysis of hydrogenotrophic production of acetic acid by Acetobacterium woodii, Biotechnol Bioeng, 108, 470, 10.1002/bit.22935 Köpke, 2010, Clostridium ljungdahlii represents a microbial production platform based on syngas, Proc Natl Acad Sci U S A, 107, 13087, 10.1073/pnas.1004716107 Nevin, 2011, Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms, Appl Environ Microbiol, 77, 2882, 10.1128/AEM.02642-10 Berg, 2007, A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea, Science, 318, 1782, 10.1126/science.1149976 Estelmann, 2011, Labeling and enzyme studies of the central carbon metabolism in Metallosphaera sedula, J Bacteriol, 193, 1191, 10.1128/JB.01155-10 Han, 2012, Epimerase (Msed_ 0639) and Mutase (Msed_0638, Msed_2055) convert (S)-methylmalonyl-CoA to succinyl-CoA in the Metallosphaera sedula 3-hydroxypropionate/4-hydroxybutyrate cycle, Appl Environ Microbiol, 78, 6194, 10.1128/AEM.01312-12 Hawkins, 2012, Role of 4-hydroxybutyrate-CoA synthetase in the CO2 fixation cycle in thermoacidophilic Archaea, J Biol Chem Keller M, Schut GJ, Lipscomb GL, Menon A, Iwuchukwu I, Leuko T, Thorgersen MP, Nixon WJ, Hawkins A, Kelly RM et al.: Exploiting microbial hyperthermophilicity to produce an industrial chemical using hydrogen and carbon dioxide. Proc Natl Acad Sci U S A 2013. [in press]. Yamamoto, 2006, Role of two 2-oxoglutarate:ferredoxin oxidoreductases in Hydrogenobacter thermophilus under aerobic and anaerobic conditions, FEMS Microbiol Lett, 263, 189, 10.1111/j.1574-6968.2006.00415.x Thorgersen, 2012, Mechanism of oxygen detoxification by the surprisingly oxygen-tolerant hyperthermophilic archaeon, Pyrococcus furiosus, Proc Natl Acad Sci U S A, 109, 18547, 10.1073/pnas.1208605109 Boyle, 2011, Computation of metabolic fluxes and efficiencies for biological carbon dioxide fixation, Metabol Eng, 13, 150, 10.1016/j.ymben.2011.01.005 Fast, 2012, Stoichiometric and energetic analyses of non-photosynthetic CO2-fixation pathways to support synthetic biology strategies for production of fuels and chemicals, Curr Opin Chem Eng, 1, 380, 10.1016/j.coche.2012.07.005 Bar-Even, 2012, A survey of carbon fixation pathways through a quantitative lens, J Exp Bot, 63, 2325, 10.1093/jxb/err417 Bennett, 2009, Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli, Nat Chem Biol, 5, 593, 10.1038/nchembio.186 Bar-Even, 2012, Thermodynamic constraints shape the structure of carbon fixation pathways, Biochim Biophys Acta, 1817, 1646, 10.1016/j.bbabio.2012.05.002 Bar-Even, 2010, Design and analysis of synthetic carbon fixation pathways, Proc Natl Acad Sci U S A, 107, 8889, 10.1073/pnas.0907176107 Vignais, 2007, Occurrence, classification, and biological function of hydrogenases: an overview, Chem Rev, 107, 4206, 10.1021/cr050196r Vignais, 2004, Molecular biology of microbial hydrogenases, Curr Issues Mol Biol, 6, 159 Fontecilla-Camps, 2007, Structure/function relationships of [NiFe]- and [FeFe]-hydrogenases, Chem Rev, 107, 4273, 10.1021/cr050195z Pandelia, 2010, Intermediates in the catalytic cycle of [NiFe] hydrogenase: functional spectroscopy of the active, site, ChemPhysChem, 11, 1127, 10.1002/cphc.200900950 Volbeda, 1995, Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas, Nature, 373, 580, 10.1038/373580a0 Volbeda, 2005, Structural differences between the ready and unready oxidized states of [NiFe] hydrogenases, J Biol Inorg Chem, 10, 239, 10.1007/s00775-005-0632-x Ogata, 2010, The crystal structure of the [NiFe] hydrogenase from the photosynthetic bacterium Allochromatium vinosum: characterization of the oxidized enzyme (Ni-A state), J Mol Biol, 402, 428, 10.1016/j.jmb.2010.07.041 Marques, 2010, The three-dimensional structure of [NiFeSe] hydrogenase from Desulfovibrio vulgaris Hildenborough: a hydrogenase without a bridging ligand in the active site in its oxidised, “as-isolated” state, J Mol Biol, 396, 893, 10.1016/j.jmb.2009.12.013 Peters, 1998, X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 angstrom resolution, Science, 282, 1853, 10.1126/science.282.5395.1853 Nicolet, 1999, Desulfovibrio desulfuricans iron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear center, Structure, 7, 13, 10.1016/S0969-2126(99)80005-7 Calusinska, 2010, The surprising diversity of clostridial hydrogenases: a comparative genomic perspective, Microbiology, 156, 1575, 10.1099/mic.0.032771-0 Böck, 2006, Maturation of hydrogenases, 1, 10.1016/S0065-2911(06)51001-X Burgdorf, 2005, [NiFe]-Hydrogenases of Ralstonia eutropha H16: modular enzymes for oxygen-tolerant biological hydrogen oxidation, J Mol Microbiol Biotechnol, 10, 181, 10.1159/000091564 Burgdorf, 2005, The soluble NAD+-reducing [NiFe]-hydrogenase from Ralstonia eutropha H16 consists of six subunits and can be specifically activated by NADPH, J Bacteriol, 187, 3122, 10.1128/JB.187.9.3122-3132.2005 Saggu, 2009, Spectroscopic insights into the oxygen-tolerant membrane-associated [NiFe] hydrogenase of Ralstonia eutropha H16, J Biol Chem, 284, 16264, 10.1074/jbc.M805690200 Jenney, 2008, Hydrogenases of the model hyperthermophiles, Ann N Y Acad Sci, 1125, 252, 10.1196/annals.1419.013 van Haaster, 2007, Reinvestigation of the steady-state kinetics and physiological function of the soluble NiFe-hydrogenase I of Pyrococcus furiosus, J Bacteriol, 190, 1584, 10.1128/JB.01562-07 Chandrayan, 2012, Engineering hyperthermophilic Archaeon Pyrococcus furiosus to overproduce its cytoplasmic [NiFe]-hydrogenase, J Biol Chem, 287, 3257, 10.1074/jbc.M111.290916 Cannon, 2010, Carboxysomal carbonic anhydrases: structure and role in microbial CO2 fixation, Biochim Biophys Acta, 1804, 382, 10.1016/j.bbapap.2009.09.026 Badger, 2003, CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution, J Exp Bot, 54, 609, 10.1093/jxb/erg076 Tabita, 1999, Microbial ribulose 1,5-bisphosphate carboxylase/oxygenase: a different perspective, Photosynth Res, 60, 1, 10.1023/A:1006211417981 Tripp, 2001, Carbonic anhydrase: new insights for an ancient enzyme, J Biol Chem, 276, 48615, 10.1074/jbc.R100045200 Smith, 2006, Prokaryotic carbonic anhydrases, FEMS Microbiol Rev, 24, 335, 10.1111/j.1574-6976.2000.tb00546.x McDevitt, 2011, Molecular evolution and selection pressure in alpha-class carbonic anhydrase family members, Biochim. Biophys. Acta, 1814, 1854, 10.1016/j.bbapap.2011.07.007 Rowlett, 2010, Structure and catalytic mechanism of the β-carbonic anhydrases, Biochim Biophys Acta, 1804, 362, 10.1016/j.bbapap.2009.08.002 Ferry, 2010, The γ class of carbonic anhydrases, Biochim Biophys Acta, 1804, 374, 10.1016/j.bbapap.2009.08.026 Sichwart, 2011, Extension of the substrate utilization range of Ralstonia eutropha strain H16 by metabolic engineering to include mannose and glucose, Appl Environ Microbiol, 77, 1325, 10.1128/AEM.01977-10 Orita, 2012, Identification of mutation points in Cupriavidus necator NCIMB 11599 and genetic reconstitution of glucose-utilization ability in wild strain H16 for polyhydroxyalkanoate production, J Biosci Bioeng, 113, 63, 10.1016/j.jbiosc.2011.09.014 Kawashima, 2012, Characterization and functional analyses of R-specific enoyl coenzyme A hydratases in polyhydroxyalkanoate-producing Ralstonia eutropha, Appl Environ Microbiol, 78, 493, 10.1128/AEM.06937-11 Lindenkamp, 2012, Genetically modified strains of Ralstonia eutropha H16 with β-ketothiolase gene deletions for production of copolyesters with defined 3-hydroxyvaleric acid contents, Appl Environ Microbiol, 78, 5375, 10.1128/AEM.00824-12 Brigham, 2010, Elucidation of β-oxidation pathways in Ralstonia eutropha H16 by examination of global gene expression, J Bacteriol, 192, 5454, 10.1128/JB.00493-10 Brigham, 2012, Whole-genome microarray and gene deletion studies reveal regulation of the polyhydroxyalkanoate production cycle by the stringent response in Ralstonia eutropha H16, Appl Environ Microbiol, 78, 8033, 10.1128/AEM.01693-12 Tracy, 2012, Clostridia: the importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications, Curr Opin Biotechnol, 23, 364, 10.1016/j.copbio.2011.10.008 Lee, 2012, Metabolic engineering of Clostridium acetobutylicum ATCC 824 for isopropanol–butanol–ethanol fermentation, Appl Environ Microbiol, 78, 1416, 10.1128/AEM.06382-11 Al-Hinai, 2012, Novel system for efficient isolation of Clostridium double-crossover allelic exchange mutants enabling markerless chromosomal gene deletions and DNA integration, Appl Environ Microbiol, 78, 8112, 10.1128/AEM.02214-12 Heap, 2010, The ClosTron: mutagenesis in Clostridium refined and streamlined, J Microbiol Methods, 80, 49, 10.1016/j.mimet.2009.10.018 Maezato, 2012, Metal resistance and lithoautotrophy in the extreme thermoacidophile Metalosphaera sedula, J Bacteriol, 194, 6856, 10.1128/JB.01413-12 Lipscomb, 2011, Natural competence in the hyperthermophilic archaeon Pyrococcus furiosus facilitates genetic manipulation: construction of markerless deletions of genes encoding the two cytoplasmic hydrogenases, Appl Environ Microbiol, 77, 2232, 10.1128/AEM.02624-10 Bridger, 2012, Genome sequencing of a genetically tractable Pyrococcus furiosus strain reveals a highly dynamic genome, J Bacteriol, 194, 4097, 10.1128/JB.00439-12 Werpy, 2004 Zhu, 2008, What is the maximum efficiency with which photosynthesis can convert solar energy into biomass?, Curr Opin Biotechnol, 19, 153, 10.1016/j.copbio.2008.02.004 Parida, 2011, A review of solar photovoltaic technologies, Renew Sust Energ Rev, 15, 1625, 10.1016/j.rser.2010.11.032 Holladay, 2009, An overview of hydrogen production technologies, Catal Today, 139, 244, 10.1016/j.cattod.2008.08.039 Basen, 2012, Engineering a hyperthermophilic archaeon for temperature-dependent product formation, mBio, 3, 1, 10.1128/mBio.00053-12