Regulation of Microtubule Growth and Catastrophe: Unifying Theory and Experiment
Tài liệu tham khảo
Wang, 2015, Axonal transport defects in Alzheimer's disease, Mol. Neurobiol., 51, 1309, 10.1007/s12035-014-8810-x
De Vos, 2008, Role of axonal transport in neurodegenerative diseases, Annu. Rev. Neurosci., 31, 151, 10.1146/annurev.neuro.31.061307.090711
Desai, 1997, Microtubule polymerization dynamics, Annu. Rev. Cell Dev. Biol., 13, 83, 10.1146/annurev.cellbio.13.1.83
Goodwin, 2010, Patronin regulates the microtubule network by protecting microtubule minus ends, Cell, 143, 263, 10.1016/j.cell.2010.09.022
Jiang, 2014, Microtubule minus-end stabilization by polymerization-driven CAMSAP deposition, Dev. Cell, 28, 295, 10.1016/j.devcel.2014.01.001
Meunier, 2011, K-fibre minus ends are stabilized by a RanGTP-dependent mechanism essential for functional spindle assembly, Nat. Cell Biol., 13, 1406, 10.1038/ncb2372
Akhmanova, 2015, Microtubule minus-end-targeting proteins, Curr. Biol., 25, R162, 10.1016/j.cub.2014.12.027
Howard, 2003, Dynamics and mechanics of the microtubule plus end, Nature, 422, 753, 10.1038/nature01600
DeLuca, 2006, Kinetochore microtubule dynamics and attachment stability are regulated by Hec1, Cell, 127, 969, 10.1016/j.cell.2006.09.047
Hoppeler-Lebel, 2007, Centrosomal CAP350 protein stabilises microtubules associated with the Golgi complex, J. Cell Sci., 120, 3299, 10.1242/jcs.013102
Akhmanova, 2008, Tracking the ends: a dynamic protein network controls the fate of microtubule tips, Nat. Rev. Mol. Cell Biol., 9, 309, 10.1038/nrm2369
Ananthanarayanan, 2013, Dynein motion switches from diffusive to directed upon cortical anchoring, Cell, 153, 1526, 10.1016/j.cell.2013.05.020
Akhmanova, 2009, Touch, grasp, deliver and control: functional cross-talk between microtubules and cell adhesions, Traffic, 10, 268, 10.1111/j.1600-0854.2008.00869.x
Roberts, 2014, Reconstitution of dynein transport to the microtubule plus end by kinesin, Elife, 2014, 1
Laan, 2012, Cortical dynein controls microtubule dynamics to generate pulling forces that position microtubule asters, Cell, 148, 502, 10.1016/j.cell.2012.01.007
Kirschner, 1986, Beyond self-assembly: from microtubules to morphogenesis, Cell, 45, 329, 10.1016/0092-8674(86)90318-1
Alberts, 2008
Walker, 1989, Asymmetric behavior of severed microtubule ends after ultraviolet-microbeam irradiation of individual microtubules in vitro, J. Cell Biol., 108, 931, 10.1083/jcb.108.3.931
Walker, 1991, Dilution of individual microtubules observed in real time in vitro: evidence that cap size is small and independent of elongation rate, J. Cell Biol., 114, 73, 10.1083/jcb.114.1.73
Voter, 1991, Dilution-induced disassembly of microtubules: relation to dynamic instability and the GTP cap, Cell Motil. Cytoskeleton, 18, 55, 10.1002/cm.970180106
Carlier, 1981, Kinetic analysis of guanosine 5′-triphosphate hydrolysis associated with tubulin polymerization, Biochemistry, 20, 1918, 10.1021/bi00510a030
Howard, 2009, Growth, fluctuation and switching at microtubule plus ends, Nat. Rev. Mol. Cell Biol., 10, 569, 10.1038/nrm2713
Gardner, 2011, Depolymerizing kinesins Kip3 and MCAK shape cellular microtubule architecture by differential control of catastrophe, Cell, 147, 1092, 10.1016/j.cell.2011.10.037
Coombes, 2013, Evolving tip structures can explain age-dependent microtubule catastrophe, Curr. Biol., 23, 1342, 10.1016/j.cub.2013.05.059
Howard, 2007, Microtubule polymerases and depolymerases, Curr. Opin. Cell Biol., 19, 31, 10.1016/j.ceb.2006.12.009
Van der Vaart, 2009, Regulation of microtubule dynamic instability, Biochem. Soc. Trans., 37, 1007, 10.1042/BST0371007
Wieczorek, 2015, Microtubule-associated proteins control the kinetics of microtubule nucleation, Nat. Cell Biol., 17, 907, 10.1038/ncb3188
Sharp, 2012, Microtubule-severing enzymes at the cutting edge, J. Cell Sci., 125, 2561, 10.1242/jcs.101139
Verde, 1992, Control of microtubule dynamics and length by cyclin A- and cyclin B-dependent kinases in Xenopus egg extracts, J. Cell Biol., 118, 1097, 10.1083/jcb.118.5.1097
Dogterom, 1993, Physical aspects of the growth and regulation of microtubule structures, Phys. Rev. Lett., 70, 1347, 10.1103/PhysRevLett.70.1347
Walker, 1988, Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies, J. Cell Biol., 107, 1437, 10.1083/jcb.107.4.1437
Al-Bassam, 2010, CLASP promotes microtubule rescue by recruiting tubulin dimers to the microtubule, Dev. Cell, 19, 245, 10.1016/j.devcel.2010.07.016
Drubin, 1986, Tau protein function in living cells, J. Cell Biol., 103, 2739, 10.1083/jcb.103.6.2739
LeBoeuf, 2008, FTDP-17 mutations in tau alter the regulation of microtubule dynamics: an “alternative core” model for normal and pathological tau action, J. Biol. Chem., 283, 36406, 10.1074/jbc.M803519200
Podolski, 2014, Stu2, the budding yeast XMAP215/Dis1 homolog, promotes assembly of yeast microtubules by increasing growth rate and decreasing catastrophe frequency, J. Biol. Chem., 289, 28087, 10.1074/jbc.M114.584300
Holzbaur, 1991, Homology of a 150K cytoplasmic dynein-associated polypeptide with the Drosophila gene Glued, Nature, 351, 579, 10.1038/351579a0
Lazarus, 2013, Dynactin subunit p150Glued is a neuron-specific anti-catastrophe factor, PLoS Biol., 11, 1, 10.1371/journal.pbio.1001611
Jourdain, 1997, Stathmin: a tubulin-sequestering protein which forms a ternary T2S complex with two tubulin molecules, Biochemistry, 36, 10817, 10.1021/bi971491b
Belmont, 1996, Identification of a protein that interacts with tubulin dimers and increases the catastrophe rate of microtubules, Cell, 84, 623, 10.1016/S0092-8674(00)81037-5
Fourniol, 2010, Template-free 13-protofilament microtubule-MAP assembly visualized at 8Å resolution, J. Cell Biol., 191, 463, 10.1083/jcb.201007081
Varga, 2006, Yeast kinesin-8 depolymerizes microtubules in a length-dependent manner, Nat. Cell Biol., 8, 957, 10.1038/ncb1462
Mayr, 2007, The human kinesin Kif18A is a motile microtubule depolymerase essential for chromosome congression, Curr. Biol., 17, 488, 10.1016/j.cub.2007.02.036
Stumpff, 2008, The Kinesin-8 motor Kif18A suppresses kinetochore movements to control mitotic chromosome alignment, Dev. Cell, 14, 252, 10.1016/j.devcel.2007.11.014
Hunter, 2003, The kinesin-related protein MCAK is a microtubule depolymerase that forms an ATP-hydrolyzing complex at microtubule ends, Mol. Cell, 11, 445, 10.1016/S1097-2765(03)00049-2
Gupta, 2006, Plus end-specific depolymerase activity of Kip3, a kinesin-8 protein, explains its role in positioning the yeast mitotic spindle, Nat. Cell Biol., 8, 913, 10.1038/ncb1457
Zanic, 2013, Synergy between XMAP215 and EB1 increases microtubule growth rates to physiological levels, Nat. Cell Biol., 15, 1, 10.1038/ncb2744
Bringmann, 2004, A kinesin-like motor inhibits microtubule dynamic instability, Science, 303, 1519, 10.1126/science.1094838
Vitre, 2008, EB1 regulates microtubule dynamics and tubulin sheet closure in vitro, Nat. Cell Biol., 10, 415, 10.1038/ncb1703
Lopus, 2012, Cooperative stabilization of microtubule dynamics by EB1 and CLIP-170 involves displacement of stably bound Pi at microtubule ends, Biochemistry, 51, 3021, 10.1021/bi300038t
Ranjith, 2010, Role of ATP-hydrolysis in the dynamics of a single actin filament, Biophys. J., 98, 1418, 10.1016/j.bpj.2009.12.4306
Padinhateeri, 2012, Random hydrolysis controls the dynamic instability of microtubules, Biophys. J., 102, 1274, 10.1016/j.bpj.2011.12.059
Bowne-Anderson, 2013, Microtubule dynamic instability: a new model with coupled GTP hydrolysis and multistep catastrophe, Bioessays, 35, 452, 10.1002/bies.201200131
Van Buren, 2005, Mechanochemical model of microtubule structure and self-assembly kinetics, Biophys. J., 89, 2911, 10.1529/biophysj.105.060913
Bayley, 1990, Microtubule dynamic instability: numerical simulation of microtubule transition properties using a Lateral Cap model, J. Cell Sci., 95, 33, 10.1242/jcs.95.1.33
Martin, 1993, Dynamic instability of microtubules: Monte Carlo simulation and application to different types of microtubule lattice, Biophys. J., 65, 578, 10.1016/S0006-3495(93)81091-9
Chen, 1985, Monte Carlo study of the GTP cap in a five-start helix model of a microtubule, Proc. Natl. Acad. Sci. U.S.A., 82, 1131, 10.1073/pnas.82.4.1131
Flyvbjerg, 1996, Microtubule dynamics: caps, catastrophes, and coupled hydrolysis, Phys. Rev. E, 54, 5538, 10.1103/PhysRevE.54.5538
Brouhard, 2015, Dynamic instability 30 years later: complexities in microtubule growth and catastrophe, Mol. Biol. Cell, 26, 1207, 10.1091/mbc.e13-10-0594
Nogales, 1998, Structure of the alpha beta tubulin dimer by electron crystallography, Nature, 391, 199, 10.1038/34465
Van Buren, 2002, Estimates of lateral and longitudinal bond energies within the microtubule lattice, Proc. Natl. Acad. Sci. U.S.A., 99, 6035, 10.1073/pnas.092504999
Margolin, 2006, Analysis of a mesoscopic stochastic model of microtubule dynamic instability, Phys. Rev. E, 74, 041920, 10.1103/PhysRevE.74.041920
Margolin, 2012, The mechanisms of microtubule catastrophe and rescue: implications from analysis of a dimer-scale computational model, Mol. Biol. Cell, 23, 642, 10.1091/mbc.e11-08-0688
Stout, 2011, Kif18B interacts with EB1 and controls astral microtubule length during mitosis, Mol. Biol. Cell, 22, 3070, 10.1091/mbc.e11-04-0363
Wordeman, 1995, Identification and partial characterization of mitotic centromere-associated kinesin, a kinesin-related protein that associates with centromeres during mitosis, J. Cell Biol., 128, 95, 10.1083/jcb.128.1.95
Li, 2012, Reconstitution of dynamic microtubules with Drosophila XMAP215, EB1, and sentin, J. Cell Biol., 199, 849, 10.1083/jcb.201206101
Komarova, 2009, Mammalian end binding proteins control persistent microtubule growth, J. Cell Biol., 184, 691, 10.1083/jcb.200807179
Zanic, 2009, EB1 recognizes the nucleotide state of tubulin in the microtubule lattice, PLoS ONE, 4, e7585, 10.1371/journal.pone.0007585
Maurer, 2011, GTPgammaS microtubules mimic the growing microtubule end structure recognized by end-binding proteins (EBs), Proc. Natl. Acad. Sci. U.S.A., 108, 3988, 10.1073/pnas.1014758108
Hyman, 1992, Role of GTP hydrolysis in microtubule dynamics: information from a slowly hydrolyzable analogue, GMPCPP, Mol. Biol. Cell, 3, 1155, 10.1091/mbc.3.10.1155
Gard, 1987, A microtubule-associated protein from Xenopus eggs that specifically promotes assembly at the plus-end, J. Cell Biol., 105, 2203, 10.1083/jcb.105.5.2203
Wang, 1997, Stu2p: a microtubule-binding protein that is an essential component of the yeast spindle pole body, J. Cell Biol., 139, 1271, 10.1083/jcb.139.5.1271
Sobel, 1989, Intracellular substrates for extracellular signaling. Characterization of a ubiquitous, neuron-enriched phosphoprotein (stathmin), J. Biol. Chem., 264, 3765, 10.1016/S0021-9258(19)84915-3
Pasqualone, 1994, STU1, a suppressor of a β-tubulin mutation, encodes a novel and essential component of the yeast mitotic spindle, J. Cell Biol., 127, 1973, 10.1083/jcb.127.6.1973
Roof, 1992, Kinesin-related proteins required for assembly of the mitotic spindle, J. Cell Biol., 118, 95, 10.1083/jcb.118.1.95
Des Portes, 1998, A novel CNS gene required for neuronal migration and involved in X-linked subcortical laminar heterotopia and lissencephaly syndrome, Cell, 92, 51, 10.1016/S0092-8674(00)80898-3
Moores, 2006, Distinct roles of doublecortin modulating the microtubule cytoskeleton, EMBO J., 25, 4448, 10.1038/sj.emboj.7601335
DeZwaan, 1997, Kinesin-related KIP3 of Saccharomyces cerevisiae is required for a distinct step in nuclear migration, J. Cell Biol., 138, 1023, 10.1083/jcb.138.5.1023