Regulation of Microtubule Growth and Catastrophe: Unifying Theory and Experiment

Trends in Cell Biology - Tập 25 - Trang 769-779 - 2015
Hugo Bowne-Anderson1, Anneke Hibbel2,3, Jonathon Howard1
1Yale University, New Haven, CT 06511 USA
2Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
3ETH Zurich, Institute for Biochemistry, HPM E8.1, Otto-Stern-Weg 3, 8093 Zurich, Switzerland

Tài liệu tham khảo

Wang, 2015, Axonal transport defects in Alzheimer's disease, Mol. Neurobiol., 51, 1309, 10.1007/s12035-014-8810-x

De Vos, 2008, Role of axonal transport in neurodegenerative diseases, Annu. Rev. Neurosci., 31, 151, 10.1146/annurev.neuro.31.061307.090711

Desai, 1997, Microtubule polymerization dynamics, Annu. Rev. Cell Dev. Biol., 13, 83, 10.1146/annurev.cellbio.13.1.83

Goodwin, 2010, Patronin regulates the microtubule network by protecting microtubule minus ends, Cell, 143, 263, 10.1016/j.cell.2010.09.022

Jiang, 2014, Microtubule minus-end stabilization by polymerization-driven CAMSAP deposition, Dev. Cell, 28, 295, 10.1016/j.devcel.2014.01.001

Meunier, 2011, K-fibre minus ends are stabilized by a RanGTP-dependent mechanism essential for functional spindle assembly, Nat. Cell Biol., 13, 1406, 10.1038/ncb2372

Akhmanova, 2015, Microtubule minus-end-targeting proteins, Curr. Biol., 25, R162, 10.1016/j.cub.2014.12.027

Howard, 2003, Dynamics and mechanics of the microtubule plus end, Nature, 422, 753, 10.1038/nature01600

DeLuca, 2006, Kinetochore microtubule dynamics and attachment stability are regulated by Hec1, Cell, 127, 969, 10.1016/j.cell.2006.09.047

Hoppeler-Lebel, 2007, Centrosomal CAP350 protein stabilises microtubules associated with the Golgi complex, J. Cell Sci., 120, 3299, 10.1242/jcs.013102

Akhmanova, 2008, Tracking the ends: a dynamic protein network controls the fate of microtubule tips, Nat. Rev. Mol. Cell Biol., 9, 309, 10.1038/nrm2369

Ananthanarayanan, 2013, Dynein motion switches from diffusive to directed upon cortical anchoring, Cell, 153, 1526, 10.1016/j.cell.2013.05.020

Akhmanova, 2009, Touch, grasp, deliver and control: functional cross-talk between microtubules and cell adhesions, Traffic, 10, 268, 10.1111/j.1600-0854.2008.00869.x

Roberts, 2014, Reconstitution of dynein transport to the microtubule plus end by kinesin, Elife, 2014, 1

Laan, 2012, Cortical dynein controls microtubule dynamics to generate pulling forces that position microtubule asters, Cell, 148, 502, 10.1016/j.cell.2012.01.007

Kirschner, 1986, Beyond self-assembly: from microtubules to morphogenesis, Cell, 45, 329, 10.1016/0092-8674(86)90318-1

Alberts, 2008

Walker, 1989, Asymmetric behavior of severed microtubule ends after ultraviolet-microbeam irradiation of individual microtubules in vitro, J. Cell Biol., 108, 931, 10.1083/jcb.108.3.931

Walker, 1991, Dilution of individual microtubules observed in real time in vitro: evidence that cap size is small and independent of elongation rate, J. Cell Biol., 114, 73, 10.1083/jcb.114.1.73

Voter, 1991, Dilution-induced disassembly of microtubules: relation to dynamic instability and the GTP cap, Cell Motil. Cytoskeleton, 18, 55, 10.1002/cm.970180106

Carlier, 1981, Kinetic analysis of guanosine 5′-triphosphate hydrolysis associated with tubulin polymerization, Biochemistry, 20, 1918, 10.1021/bi00510a030

Howard, 2009, Growth, fluctuation and switching at microtubule plus ends, Nat. Rev. Mol. Cell Biol., 10, 569, 10.1038/nrm2713

Gardner, 2011, Depolymerizing kinesins Kip3 and MCAK shape cellular microtubule architecture by differential control of catastrophe, Cell, 147, 1092, 10.1016/j.cell.2011.10.037

Coombes, 2013, Evolving tip structures can explain age-dependent microtubule catastrophe, Curr. Biol., 23, 1342, 10.1016/j.cub.2013.05.059

Howard, 2007, Microtubule polymerases and depolymerases, Curr. Opin. Cell Biol., 19, 31, 10.1016/j.ceb.2006.12.009

Akhmanova, 2010, Microtubule +TIPs at a glance, J. Cell Sci., 123, 3415, 10.1242/jcs.062414

Van der Vaart, 2009, Regulation of microtubule dynamic instability, Biochem. Soc. Trans., 37, 1007, 10.1042/BST0371007

Wieczorek, 2015, Microtubule-associated proteins control the kinetics of microtubule nucleation, Nat. Cell Biol., 17, 907, 10.1038/ncb3188

Sharp, 2012, Microtubule-severing enzymes at the cutting edge, J. Cell Sci., 125, 2561, 10.1242/jcs.101139

Verde, 1992, Control of microtubule dynamics and length by cyclin A- and cyclin B-dependent kinases in Xenopus egg extracts, J. Cell Biol., 118, 1097, 10.1083/jcb.118.5.1097

Dogterom, 1993, Physical aspects of the growth and regulation of microtubule structures, Phys. Rev. Lett., 70, 1347, 10.1103/PhysRevLett.70.1347

Walker, 1988, Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies, J. Cell Biol., 107, 1437, 10.1083/jcb.107.4.1437

Al-Bassam, 2010, CLASP promotes microtubule rescue by recruiting tubulin dimers to the microtubule, Dev. Cell, 19, 245, 10.1016/j.devcel.2010.07.016

Drubin, 1986, Tau protein function in living cells, J. Cell Biol., 103, 2739, 10.1083/jcb.103.6.2739

LeBoeuf, 2008, FTDP-17 mutations in tau alter the regulation of microtubule dynamics: an “alternative core” model for normal and pathological tau action, J. Biol. Chem., 283, 36406, 10.1074/jbc.M803519200

Podolski, 2014, Stu2, the budding yeast XMAP215/Dis1 homolog, promotes assembly of yeast microtubules by increasing growth rate and decreasing catastrophe frequency, J. Biol. Chem., 289, 28087, 10.1074/jbc.M114.584300

Holzbaur, 1991, Homology of a 150K cytoplasmic dynein-associated polypeptide with the Drosophila gene Glued, Nature, 351, 579, 10.1038/351579a0

Lazarus, 2013, Dynactin subunit p150Glued is a neuron-specific anti-catastrophe factor, PLoS Biol., 11, 1, 10.1371/journal.pbio.1001611

Jourdain, 1997, Stathmin: a tubulin-sequestering protein which forms a ternary T2S complex with two tubulin molecules, Biochemistry, 36, 10817, 10.1021/bi971491b

Belmont, 1996, Identification of a protein that interacts with tubulin dimers and increases the catastrophe rate of microtubules, Cell, 84, 623, 10.1016/S0092-8674(00)81037-5

Fourniol, 2010, Template-free 13-protofilament microtubule-MAP assembly visualized at 8Å resolution, J. Cell Biol., 191, 463, 10.1083/jcb.201007081

Varga, 2006, Yeast kinesin-8 depolymerizes microtubules in a length-dependent manner, Nat. Cell Biol., 8, 957, 10.1038/ncb1462

Mayr, 2007, The human kinesin Kif18A is a motile microtubule depolymerase essential for chromosome congression, Curr. Biol., 17, 488, 10.1016/j.cub.2007.02.036

Stumpff, 2008, The Kinesin-8 motor Kif18A suppresses kinetochore movements to control mitotic chromosome alignment, Dev. Cell, 14, 252, 10.1016/j.devcel.2007.11.014

Hunter, 2003, The kinesin-related protein MCAK is a microtubule depolymerase that forms an ATP-hydrolyzing complex at microtubule ends, Mol. Cell, 11, 445, 10.1016/S1097-2765(03)00049-2

Gupta, 2006, Plus end-specific depolymerase activity of Kip3, a kinesin-8 protein, explains its role in positioning the yeast mitotic spindle, Nat. Cell Biol., 8, 913, 10.1038/ncb1457

Zanic, 2013, Synergy between XMAP215 and EB1 increases microtubule growth rates to physiological levels, Nat. Cell Biol., 15, 1, 10.1038/ncb2744

Bringmann, 2004, A kinesin-like motor inhibits microtubule dynamic instability, Science, 303, 1519, 10.1126/science.1094838

Vitre, 2008, EB1 regulates microtubule dynamics and tubulin sheet closure in vitro, Nat. Cell Biol., 10, 415, 10.1038/ncb1703

Lopus, 2012, Cooperative stabilization of microtubule dynamics by EB1 and CLIP-170 involves displacement of stably bound Pi at microtubule ends, Biochemistry, 51, 3021, 10.1021/bi300038t

Ranjith, 2010, Role of ATP-hydrolysis in the dynamics of a single actin filament, Biophys. J., 98, 1418, 10.1016/j.bpj.2009.12.4306

Padinhateeri, 2012, Random hydrolysis controls the dynamic instability of microtubules, Biophys. J., 102, 1274, 10.1016/j.bpj.2011.12.059

Bowne-Anderson, 2013, Microtubule dynamic instability: a new model with coupled GTP hydrolysis and multistep catastrophe, Bioessays, 35, 452, 10.1002/bies.201200131

Van Buren, 2005, Mechanochemical model of microtubule structure and self-assembly kinetics, Biophys. J., 89, 2911, 10.1529/biophysj.105.060913

Bayley, 1990, Microtubule dynamic instability: numerical simulation of microtubule transition properties using a Lateral Cap model, J. Cell Sci., 95, 33, 10.1242/jcs.95.1.33

Martin, 1993, Dynamic instability of microtubules: Monte Carlo simulation and application to different types of microtubule lattice, Biophys. J., 65, 578, 10.1016/S0006-3495(93)81091-9

Chen, 1985, Monte Carlo study of the GTP cap in a five-start helix model of a microtubule, Proc. Natl. Acad. Sci. U.S.A., 82, 1131, 10.1073/pnas.82.4.1131

Flyvbjerg, 1996, Microtubule dynamics: caps, catastrophes, and coupled hydrolysis, Phys. Rev. E, 54, 5538, 10.1103/PhysRevE.54.5538

Brouhard, 2015, Dynamic instability 30 years later: complexities in microtubule growth and catastrophe, Mol. Biol. Cell, 26, 1207, 10.1091/mbc.e13-10-0594

Nogales, 1998, Structure of the alpha beta tubulin dimer by electron crystallography, Nature, 391, 199, 10.1038/34465

Van Buren, 2002, Estimates of lateral and longitudinal bond energies within the microtubule lattice, Proc. Natl. Acad. Sci. U.S.A., 99, 6035, 10.1073/pnas.092504999

Margolin, 2006, Analysis of a mesoscopic stochastic model of microtubule dynamic instability, Phys. Rev. E, 74, 041920, 10.1103/PhysRevE.74.041920

Margolin, 2012, The mechanisms of microtubule catastrophe and rescue: implications from analysis of a dimer-scale computational model, Mol. Biol. Cell, 23, 642, 10.1091/mbc.e11-08-0688

Stout, 2011, Kif18B interacts with EB1 and controls astral microtubule length during mitosis, Mol. Biol. Cell, 22, 3070, 10.1091/mbc.e11-04-0363

Wordeman, 1995, Identification and partial characterization of mitotic centromere-associated kinesin, a kinesin-related protein that associates with centromeres during mitosis, J. Cell Biol., 128, 95, 10.1083/jcb.128.1.95

Li, 2012, Reconstitution of dynamic microtubules with Drosophila XMAP215, EB1, and sentin, J. Cell Biol., 199, 849, 10.1083/jcb.201206101

Komarova, 2009, Mammalian end binding proteins control persistent microtubule growth, J. Cell Biol., 184, 691, 10.1083/jcb.200807179

Zanic, 2009, EB1 recognizes the nucleotide state of tubulin in the microtubule lattice, PLoS ONE, 4, e7585, 10.1371/journal.pone.0007585

Maurer, 2011, GTPgammaS microtubules mimic the growing microtubule end structure recognized by end-binding proteins (EBs), Proc. Natl. Acad. Sci. U.S.A., 108, 3988, 10.1073/pnas.1014758108

Hyman, 1992, Role of GTP hydrolysis in microtubule dynamics: information from a slowly hydrolyzable analogue, GMPCPP, Mol. Biol. Cell, 3, 1155, 10.1091/mbc.3.10.1155

Gard, 1987, A microtubule-associated protein from Xenopus eggs that specifically promotes assembly at the plus-end, J. Cell Biol., 105, 2203, 10.1083/jcb.105.5.2203

Wang, 1997, Stu2p: a microtubule-binding protein that is an essential component of the yeast spindle pole body, J. Cell Biol., 139, 1271, 10.1083/jcb.139.5.1271

Sobel, 1989, Intracellular substrates for extracellular signaling. Characterization of a ubiquitous, neuron-enriched phosphoprotein (stathmin), J. Biol. Chem., 264, 3765, 10.1016/S0021-9258(19)84915-3

Pasqualone, 1994, STU1, a suppressor of a β-tubulin mutation, encodes a novel and essential component of the yeast mitotic spindle, J. Cell Biol., 127, 1973, 10.1083/jcb.127.6.1973

Roof, 1992, Kinesin-related proteins required for assembly of the mitotic spindle, J. Cell Biol., 118, 95, 10.1083/jcb.118.1.95

Des Portes, 1998, A novel CNS gene required for neuronal migration and involved in X-linked subcortical laminar heterotopia and lissencephaly syndrome, Cell, 92, 51, 10.1016/S0092-8674(00)80898-3

Moores, 2006, Distinct roles of doublecortin modulating the microtubule cytoskeleton, EMBO J., 25, 4448, 10.1038/sj.emboj.7601335

DeZwaan, 1997, Kinesin-related KIP3 of Saccharomyces cerevisiae is required for a distinct step in nuclear migration, J. Cell Biol., 138, 1023, 10.1083/jcb.138.5.1023

Luboshits, 2005, MS-KIF18A, new kinesin; structure and cellular expression, Gene, 351, 19, 10.1016/j.gene.2005.02.009