Doublecortin Recognizes the Longitudinal Curvature of the Microtubule End and Lattice
Tài liệu tham khảo
Akhmanova, 2008, Tracking the ends: a dynamic protein network controls the fate of microtubule tips, Nat. Rev. Mol. Cell Biol., 9, 309, 10.1038/nrm2369
Howard, 2007, Microtubule polymerases and depolymerases, Curr. Opin. Cell Biol., 19, 31, 10.1016/j.ceb.2006.12.009
Mitchison, 1984, Dynamic instability of microtubule growth, Nature, 312, 237, 10.1038/312237a0
Maurer, 2012, EBs recognize a nucleotide-dependent structural cap at growing microtubule ends, Cell, 149, 371, 10.1016/j.cell.2012.02.049
Mandelkow, 1991, Microtubule dynamics and microtubule caps: a time-resolved cryo-electron microscopy study, J. Cell Biol., 114, 977, 10.1083/jcb.114.5.977
McIntosh, 2008, Fibrils connect microtubule tips with kinetochores: a mechanism to couple tubulin dynamics to chromosome motion, Cell, 135, 322, 10.1016/j.cell.2008.08.038
Höög, 2011, Electron tomography reveals a flared morphology on growing microtubule ends, J. Cell Sci., 124, 693, 10.1242/jcs.072967
Pecqueur, 2012, A designed ankyrin repeat protein selected to bind to tubulin caps the microtubule plus end, Proc. Natl. Acad. Sci. USA, 109, 12011, 10.1073/pnas.1204129109
Ayaz, 2012, A TOG:αβ-tubulin complex structure reveals conformation-based mechanisms for a microtubule polymerase, Science, 337, 857, 10.1126/science.1221698
Wang, 2005, Nucleotide-dependent bending flexibility of tubulin regulates microtubule assembly, Nature, 435, 911, 10.1038/nature03606
Rice, 2008, The lattice as allosteric effector: structural studies of alphabeta- and γ-tubulin clarify the role of GTP in microtubule assembly, Proc. Natl. Acad. Sci. USA, 105, 5378, 10.1073/pnas.0801155105
Chrétien, 1995, Structure of growing microtubule ends: two-dimensional sheets close into tubes at variable rates, J. Cell Biol., 129, 1311, 10.1083/jcb.129.5.1311
Jánosi, 1998, Modeling elastic properties of microtubule tips and walls, Eur. Biophys. J., 27, 501, 10.1007/s002490050160
Perez, 1999, CLIP-170 highlights growing microtubule ends in vivo, Cell, 96, 517, 10.1016/S0092-8674(00)80656-X
Morrison, 1998, EB1, a protein which interacts with the APC tumour suppressor, is associated with the microtubule cytoskeleton throughout the cell cycle, Oncogene, 17, 3471, 10.1038/sj.onc.1202247
Matov, 2010, Analysis of microtubule dynamic instability using a plus-end growth marker, Nat. Methods, 7, 761, 10.1038/nmeth.1493
Zanic, 2009, EB1 recognizes the nucleotide state of tubulin in the microtubule lattice, PLoS ONE, 4, e7585, 10.1371/journal.pone.0007585
Maurer, 2011, GTPgammaS microtubules mimic the growing microtubule end structure recognized by end-binding proteins (EBs), Proc. Natl. Acad. Sci. USA, 108, 3988, 10.1073/pnas.1014758108
Alushin, 2014, High-resolution microtubule structures reveal the structural transitions in αβ-tubulin upon GTP hydrolysis, Cell, 157, 1117, 10.1016/j.cell.2014.03.053
Desai, 1999, Kin I kinesins are microtubule-destabilizing enzymes, Cell, 96, 69, 10.1016/S0092-8674(00)80960-5
Brouhard, 2008, XMAP215 is a processive microtubule polymerase, Cell, 132, 79, 10.1016/j.cell.2007.11.043
Lampert, 2010, The Dam1 complex confers microtubule plus end-tracking activity to the Ndc80 kinetochore complex, J. Cell Biol., 189, 641, 10.1083/jcb.200912021
Bechstedt, 2012, Doublecortin recognizes the 13-protofilament microtubule cooperatively and tracks microtubule ends, Dev. Cell, 23, 181, 10.1016/j.devcel.2012.05.006
Fourniol, 2010, Template-free 13-protofilament microtubule-MAP assembly visualized at 8 A resolution, J. Cell Biol., 191, 463, 10.1083/jcb.201007081
Gleeson, 1998, Doublecortin, a brain-specific gene mutated in human X-linked lissencephaly and double cortex syndrome, encodes a putative signaling protein, Cell, 92, 63, 10.1016/S0092-8674(00)80899-5
des Portes, 1998, A novel CNS gene required for neuronal migration and involved in X-linked subcortical laminar heterotopia and lissencephaly syndrome, Cell, 92, 51, 10.1016/S0092-8674(00)80898-3
Bai, 2003, RNAi reveals doublecortin is required for radial migration in rat neocortex, Nat. Neurosci., 6, 1277, 10.1038/nn1153
Tint, 2009, Doublecortin associates with microtubules preferentially in regions of the axon displaying actin-rich protrusive structures, J. Neurosci., 29, 10995, 10.1523/JNEUROSCI.3399-09.2009
Deuel, 2006, Genetic interactions between doublecortin and doublecortin-like kinase in neuronal migration and axon outgrowth, Neuron, 49, 41, 10.1016/j.neuron.2005.10.038
Gleeson, 1999, Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons, Neuron, 23, 257, 10.1016/S0896-6273(00)80778-3
Francis, 1999, Doublecortin is a developmentally regulated, microtubule-associated protein expressed in migrating and differentiating neurons, Neuron, 23, 247, 10.1016/S0896-6273(00)80777-1
Gell, 2010, Microtubule dynamics reconstituted in vitro and imaged by single-molecule fluorescence microscopy, Methods Cell Biol., 95, 221, 10.1016/S0091-679X(10)95013-9
Bieling, 2007, Reconstitution of a microtubule plus-end tracking system in vitro, Nature, 450, 1100, 10.1038/nature06386
Moores, 2006, Distinct roles of doublecortin modulating the microtubule cytoskeleton, EMBO J., 25, 4448, 10.1038/sj.emboj.7601335
Meurer-Grob, 2001, Microtubule structure at improved resolution, Biochemistry, 40, 8000, 10.1021/bi010343p
Al-Bassam, 2002, MAP2 and tau bind longitudinally along the outer ridges of microtubule protofilaments, J. Cell Biol., 157, 1187, 10.1083/jcb.200201048
Hirose, 1995, Nucleotide-dependent angular change in kinesin motor domain bound to tubulin, Nature, 376, 277, 10.1038/376277a0
Hoenger, 1995, Three-dimensional structure of a tubulin-motor-protein complex, Nature, 376, 271, 10.1038/376271a0
Kikkawa, 1995, Three-dimensional structure of the kinesin head-microtubule complex, Nature, 376, 274, 10.1038/376274a0
Hyman, 1992, Role of GTP hydrolysis in microtubule dynamics: information from a slowly hydrolyzable analogue, GMPCPP, Mol. Biol. Cell, 3, 1155, 10.1091/mbc.3.10.1155
Elie-Caille, 2007, Straight GDP-tubulin protofilaments form in the presence of taxol, Curr. Biol., 17, 1765, 10.1016/j.cub.2007.08.063
Zanic, 2013, Synergy between XMAP215 and EB1 increases microtubule growth rates to physiological levels, Nat. Cell Biol., 15, 688, 10.1038/ncb2744
Taylor, 2000, Patient mutations in doublecortin define a repeated tubulin-binding domain, J. Biol. Chem., 275, 34442, 10.1074/jbc.M007078200
Kim, 2003, The DCX-domain tandems of doublecortin and doublecortin-like kinase, Nat. Struct. Biol., 10, 324, 10.1038/nsb918
Alushin, 2010, The Ndc80 kinetochore complex forms oligomeric arrays along microtubules, Nature, 467, 805, 10.1038/nature09423
Dent, 1999, Reorganization and movement of microtubules in axonal growth cones and developing interstitial branches, J. Neurosci., 19, 8894, 10.1523/JNEUROSCI.19-20-08894.1999
Jean, 2012, A novel role for doublecortin and doublecortin-like kinase in regulating growth cone microtubules, Hum. Mol. Genet., 21, 5511, 10.1093/hmg/dds395
Gardner, 2011, Rapid microtubule self-assembly kinetics, Cell, 146, 582, 10.1016/j.cell.2011.06.053
Nørholm, 2010, A mutant Pfu DNA polymerase designed for advanced uracil-excision DNA engineering, BMC Biotechnol., 10, 21, 10.1186/1472-6750-10-21
Bitinaite, 2007, USER friendly DNA engineering and cloning method by uracil excision, Nucleic Acids Res., 35, 1992, 10.1093/nar/gkm041
Schmidt, 2007, The Strep-tag system for one-step purification and high-affinity detection or capturing of proteins, Nat. Protoc., 2, 1528, 10.1038/nprot.2007.209
Kunkel, 1985, Rapid and efficient site-specific mutagenesis without phenotypic selection, Proc. Natl. Acad. Sci. USA, 82, 488, 10.1073/pnas.82.2.488
Rogers, 2001, KIF1D is a fast non-processive kinesin that demonstrates novel K-loop-dependent mechanochemistry, EMBO J., 20, 5101, 10.1093/emboj/20.18.5101
Varga, 2009, Kinesin-8 motors act cooperatively to mediate length-dependent microtubule depolymerization, Cell, 138, 1174, 10.1016/j.cell.2009.07.032
Helenius, 2006, The depolymerizing kinesin MCAK uses lattice diffusion to rapidly target microtubule ends, Nature, 441, 115, 10.1038/nature04736
Castoldi, 2003, Purification of brain tubulin through two cycles of polymerization-depolymerization in a high-molarity buffer, Protein Expr. Purif., 32, 83, 10.1016/S1046-5928(03)00218-3
Hyman, 1991, Preparation of modified tubulins, Methods Enzymol., 196, 478, 10.1016/0076-6879(91)96041-O