Mechanistic Origin of Microtubule Dynamic Instability and Its Modulation by EB Proteins

Cell - Tập 162 - Trang 849-859 - 2015
Rui Zhang1, Gregory M. Alushin2, Alan Brown3, Eva Nogales4,5
1Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
2Biophysics Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA
3MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
4Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
5Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA 94720, USA

Tài liệu tham khảo

Akhmanova, 2008, Tracking the ends: a dynamic protein network controls the fate of microtubule tips, Nat. Rev. Mol. Cell Biol., 9, 309, 10.1038/nrm2369 Allegretti, 2014, Atomic model of the F420-reducing [NiFe] hydrogenase by electron cryo-microscopy using a direct electron detector, eLife, 3, e01963, 10.7554/eLife.01963 Alushin, 2010, The Ndc80 kinetochore complex forms oligomeric arrays along microtubules, Nature, 467, 805, 10.1038/nature09423 Alushin, 2014, High-resolution microtubule structures reveal the structural transitions in αβ-tubulin upon GTP hydrolysis, Cell, 157, 1117, 10.1016/j.cell.2014.03.053 Amunts, 2014, Structure of the yeast mitochondrial large ribosomal subunit, Science, 343, 1485, 10.1126/science.1249410 Anders, 2001, Dominant-lethal alpha-tubulin mutants defective in microtubule depolymerization in yeast, Mol. Biol. Cell, 12, 3973, 10.1091/mbc.12.12.3973 Brown, 2015, Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions, Acta Crystallogr. D Biol. Crystallogr., 71, 136, 10.1107/S1399004714021683 Campbell, 2012, Movies of ice-embedded particles enhance resolution in electron cryo-microscopy, Structure, 20, 1823, 10.1016/j.str.2012.08.026 Caplow, 1994, The free energy for hydrolysis of a microtubule-bound nucleotide triphosphate is near zero: all of the free energy for hydrolysis is stored in the microtubule lattice, J. Cell Biol., 127, 779, 10.1083/jcb.127.3.779 des Georges, 2008, Mal3, the Schizosaccharomyces pombe homolog of EB1, changes the microtubule lattice, Nat. Struct. Mol. Biol., 15, 1102, 10.1038/nsmb.1482 Desai, 1997, Microtubule polymerization dynamics, Annu. Rev. Cell Dev. Biol., 13, 83, 10.1146/annurev.cellbio.13.1.83 Dumontet, 2010, Microtubule-binding agents: a dynamic field of cancer therapeutics, Nat. Rev. Drug Discov., 9, 790, 10.1038/nrd3253 Emsley, 2010, Features and development of Coot, Acta Crystallogr. D Biol. Crystallogr., 66, 486, 10.1107/S0907444910007493 Galjart, 2010, Plus-end-tracking proteins and their interactions at microtubule ends, Curr. Biol., 20, R528, 10.1016/j.cub.2010.05.022 Galkin, 2008, High-resolution cryo-EM structure of the F-actin-fimbrin/plastin ABD2 complex, Proc. Natl. Acad. Sci. USA, 105, 1494, 10.1073/pnas.0708667105 Hamel, 1984, Guanosine 5′-O-(3-thiotriphosphate), a potent nucleotide inhibitor of microtubule assembly, J. Biol. Chem., 259, 11060, 10.1016/S0021-9258(18)90622-8 Hayashi, 2003, Crystal structure of the amino-terminal microtubule-binding domain of end-binding protein 1 (EB1), J. Biol. Chem., 278, 36430, 10.1074/jbc.M305773200 Honnappa, 2009, An EB1-binding motif acts as a microtubule tip localization signal, Cell, 138, 366, 10.1016/j.cell.2009.04.065 Howard, 2003, Dynamics and mechanics of the microtubule plus end, Nature, 422, 753, 10.1038/nature01600 Hyman, 1992, Role of GTP hydrolysis in microtubule dynamics: information from a slowly hydrolyzable analogue, GMPCPP, Mol. Biol. Cell, 3, 1155, 10.1091/mbc.3.10.1155 Komarova, 2009, Mammalian end binding proteins control persistent microtubule growth, J. Cell Biol., 184, 691, 10.1083/jcb.200807179 Kueh, 2009, Structural plasticity in actin and tubulin polymer dynamics, Science, 325, 960, 10.1126/science.1168823 Li, 2013, Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM, Nat. Methods, 10, 584, 10.1038/nmeth.2472 Mandelkow, 1986, On the surface lattice of microtubules: helix starts, protofilament number, seam and handedness, J. Cell Biol., 102, 1067, 10.1083/jcb.102.3.1067 Maurer, 2011, GTPgammaS microtubules mimic the growing microtubule end structure recognized by end-binding proteins (EBs), Proc. Natl. Acad. Sci. USA, 108, 3988, 10.1073/pnas.1014758108 Maurer, 2012, EBs recognize a nucleotide-dependent structural cap at growing microtubule ends, Cell, 149, 371, 10.1016/j.cell.2012.02.049 Maurer, 2014, EB1 accelerates two conformational transitions important for microtubule maturation and dynamics, Curr. Biol., 24, 372, 10.1016/j.cub.2013.12.042 Menéndez, 1998, Control of the structural stability of the tubulin dimer by one high affinity bound magnesium ion at nucleotide N-site, J. Biol. Chem., 273, 167, 10.1074/jbc.273.1.167 Mitchison, 1984, Dynamic instability of microtubule growth, Nature, 312, 237, 10.1038/312237a0 Nawrotek, 2011, The determinants that govern microtubule assembly from the atomic structure of GTP-tubulin, J. Mol. Biol., 412, 35, 10.1016/j.jmb.2011.07.029 Nogales, 1998, Tubulin and FtsZ form a distinct family of GTPases, Nat. Struct. Biol., 5, 451, 10.1038/nsb0698-451 Nogales, 1998, Structure of the alpha beta tubulin dimer by electron crystallography, Nature, 391, 199, 10.1038/34465 Nogales, 1999, High-resolution model of the microtubule, Cell, 96, 79, 10.1016/S0092-8674(00)80961-7 Oliva, 2004, Structural insights into FtsZ protofilament formation, Nat. Struct. Mol. Biol., 11, 1243, 10.1038/nsmb855 Prota, 2013, Molecular mechanism of action of microtubule-stabilizing anticancer agents, Science, 339, 587, 10.1126/science.1230582 Rice, 2008, The lattice as allosteric effector: structural studies of alphabeta- and gamma-tubulin clarify the role of GTP in microtubule assembly, Proc. Natl. Acad. Sci. USA, 105, 5378, 10.1073/pnas.0801155105 Slep, 2007, Structural basis of microtubule plus end tracking by XMAP215, CLIP-170 and EB1, Mol. Cell, 27, 976, 10.1016/j.molcel.2007.07.023 Song, 2013, High-resolution comparative modeling with RosettaCM, Structure, 21, 1735, 10.1016/j.str.2013.08.005 Sui, 2010, Structural basis of interprotofilament interaction and lateral deformation of microtubules, Structure, 18, 1022, 10.1016/j.str.2010.05.010 Suloway, 2005, Automated molecular microscopy: the new Leginon system, J. Struct. Biol., 151, 41, 10.1016/j.jsb.2005.03.010 Vitre, 2008, EB1 regulates microtubule dynamics and tubulin sheet closure in vitro, Nat. Cell Biol., 10, 415, 10.1038/ncb1703 Zhu, 2009, Interactions between EB1 and microtubules: dramatic effect of affinity tags and evidence for cooperative behavior, J. Biol. Chem., 284, 32651, 10.1074/jbc.M109.013466