Effects of irradiance and ultraviolet radiation on photoadaptation in the zooxanthellae of Aiptasia pallida: primary production, photoinhibition, and enzymic defenses against oxygen toxicity

Marine Biology - Tập 102 - Trang 243-255 - 1989
M. P. Lesser1, J. M. Shick1
1Department of Zoology and Center for Marine Studies, University of Maine, Orono, USA

Tóm tắt

Cnidarians which contain symbiotic algae are constantly faced with the challenges of a changing photic regime and a hyperoxic environment. Zooxanthellae (Symbiodinium sp.) from the sea anemone Aiptasia pallida (Verrill), collected and cultured at Bermuda Biological Station in 1986, exhibit a suite of compensatory responses to changes in irradiance, ultraviolet radiation (UV), and to the toxicity resulting from their interaction with photosynthetically produced oxygen. Superoxide dismutase (SOD) and catalase inactivate superoxide radicals (O2 -) and hydrogen peroxide (H2O2), which are mediators of oxygen toxicity, show an increase in specific activity with irradiance and in response to UV, both in cultured zooxanthellae (CZ) and freshly isolated zooxanthellae (FIZ) from acclimated anemones. CZ and FIZ exposed to environmentally realistic UV levels show a 30 to 40% increase in SOD activities compared with zooxanthellae exposed to similar irradiances without UV. CZ consistently show higher activities of both SOD and catalase compared to FIZ. Both CZ and FIZ exhibit changes in chlorophyll content and in the relationship between photosynthesis and irradiance which suggest photoadaptive changes in CO2-fixing enzymes, the photosynthetic-electron transport system, or in photosynthetic unit size (PSU). UV has a greater effect on the photosynthetic capacity (P max) of FIZ when compared to CZ acclimated at an equivalent irradiance with or without a UV component. UV also enhances the photoinhibition observed at high irradiance in both CZ and FIZ. Differences in enzyme activity between CZ and FIZ suggest an important role for the host in the protection of zooxanthellae against the direct effects of environmentally realistic UV while the photosynthetic performance of zooxanthellae in situ may not be as well protected.

Tài liệu tham khảo

Ahles, M. D. (1967). Some aspects of the morphology and physiology of Symbiodinium microadriaticum. Ph. D. thesis, Fordham University, New York

Allen, J. F. (1977). Superoxide and photosynthetic reduction of oxygen. In: Michelson, A. M., McCord, J. M., Fridovich, I. (eds.). Superoxide and superoxide dismutases. Academic Press, New York, p. 417–436

Asada, K., Kanematsu, S., Okada, S., Hayakawa, T. (1980). Phylogenetic distribution of three types of superoxide dismutase in organisms and in cell organelles. In: Bannister, J. V., Hill, H. A. O. (eds.). Chemical and biochemical aspects of superoxide and superoxide dismutase. Elsevier, Amsterdam, p. 136–153

Beers, R. F., Jr., Sizer, I. W. (1952). A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. biol. Chem. 195: 133–140

Berland, B. R., Maestrini, S. Y. (1969). Study of bacteria associated with marine algae in culture. II. Action of antibiotic substances. Mar. Biol. 3: 334–335

Berner, T., Achituv, Y., Dubinsky, Z., Benayahu, Y. (1987). Pattern of distribution and adaptation to different irradiance levels of zooxanthellae in the soft coral Litophyton arboreum (Octocorallia, Alcyonacea). Symbiosis 3: 23–40

Cavanaugh, G. M. (1975). Formulae and methods VI of the Marine Biological Laboratory Chemical Room, Marine Biological Laboratory, Woods Hole, MA

Clayton, R. K. (1977). Light and living matter, Vol. 2. The biological part. Robert E. Krieger Publ. Co., Huntington, New York

Cook, C. B. (1983). Metabolic interchange in algae-invertebrate symbiosis. Int. Rev. Cytol. Suppl. 14: 177–209

Davis, B. J. (1964). Disc electrophoresis — II method and application to human serum proteins. Ann. N. Y. Acad. Sci. 121: 404–427

D'Aoust, B. G., White, R., Wells, J. M., Olsen, D. A. (1976). Coralalgal associations: capacity for producing and sustaining elevated oxygen tensions in situ. Undersea Biomed. Res. 3: 35–40

Dykens, J. A. (1984). Enzymic defenses against oxygen toxicity in marine cnidarians containing endosymbiotic algae. Mar. Biol. Lett. 5: 291–301

Dykens, J. A., Shick, J. M. (1984). Photobiology of the symbiotic sea anemone, Anthopleura elegantissima: defenses against photodynamic effects, and seasonal photoacclimatization. Biol. Bull. mar. biol Lab., Woods Hole 167: 683–697

Gallagher, J. C., Alberte, R. S. (1985). Photosynthetic and cellular photoadaptive characteristics of three ecotypes of the marine diatom, Skeletonema costatum (Grev.) Cleve. J. exp. mar. Biol. Ecol. 94: 233–250

Guillard, R. R. L. (1973). Division rates. In: Stein, J. R. (ed.). Handbook of phycological methods-culture methods and growth measurements. Cambridge University Press, Boston, p. 290–311

Halldal, P. (1968). Photosynthetic capacities and photosynthetic action spectra of endozoic algae of the massive coral Favia. Biol. Bull. mar. biol. Lab., Woods Hole 134: 411–424

Halliwell, B. (1982). The toxic effects of oxygen on plant tissues. In: L. W. Oberley (ed.). Superoxide dismutase. CRC Press, Boca Raton, Vol. I., p. 89–123

Jaap, W. C. (1979). Observations on zooxanthellae expulsion at Middle Sambo Reef, Florida Keys. Bull. mar. Sci. 29: 414–422

Jokiel, P. L., York, R. H. Jr. (1982). Solar ultraviolet photobiology of the reef coral Pocillopora damicornis and symbiotic zooxanthellae. Bull. mar. Sci. 32: 301–315

Krause, G. H., Cornic, G. (1987). CO2 and O2 interactions in photoinhibition. In: Kyle, D. J., Osmond, C. B., Arntzen, C. J. (eds.). Photoinhibition. Elsevier, Amsterdam, p. 169–196

Kyle, D. J. (1987). The biochemical basis for photoinhibition of photosystem II. In: Kyle, D. J., Osmond, C. B., Arntzen, C. J. (eds.). Photoinhibition. Elsevier, Amsterdam, p. 197–226

Ludlow, M. M. (1987). Light stress at high temperature. In: Kyle, D. J., Osmond, C. B., Arntzen, C. J. (eds.). Photoinhibition. Elsevier, Amsterdam, p. 89–110

Neale, P. J. (1987). Algal photoinhibition and photosynthesis in the aquatic environment. In: Kyle, D. J., Osmond, C. B., Arntzen, C. J. (eds.). Photoinhibition. Elsevier, Amsterdam, p. 39–65

Prézelin, B. B. (1987). Photosynthetic physiology of dinoflagellates. In: Taylor, F. J. R. (ed.). The biology of dinoflagellates. Blackwell, Oxford, p. 174–223

Richardson, K., Beardall, J., Raven, J. A. (1983). Adaptation of unicellular algae to irradiance: an analysis of strategies. New Phytol. 93: 157–191

SAS Institute (1982). SAS user's guide: statistics SAS Institute Inc., Cary, North Carolina, USA

Schoneberg, D. A., Trench, R. K. (1980). Genetic variation in Symbiodinium microadriaticum (Freudenthal) and specificity in its symbiosis with marine invertebrates. II. Morphological variation in S. microadriaticum. Proc. R. Soc. Lond. (Ser. B) 207: 429–444

Smith, C. S., Baker, K. S. (1979). Penetration of UV-B and biologically effective dose-rates in natural waters. Photochem. Photobiol. 29: 311–323

Sokal, R. R., Rohlf, F. J. (1979). Biometry, 2nd ed. W. H. Freeman and Co., San Francisco

Steen, R. G. (1986). Evidence for heterotrophy by zooxanthellae in symbiosis with Aiptasia pulchella. Biol. Bull. mar. biol. Lab, Woods Hole. 170: 267–278

Sterrer, W. (ed.) (1986). Marine flora and fauna of Bermuda. Wiley-Interscience, New York

Trench, R. K., Blank, R. J. (1987). Symbiodinum microadriaticum Freudenthal, S. Goreauii sp. nov., S. kawagutii sp. nov., S. pilosum sp. nov.: gymnodinioid dinoflagellate symbionts of marine invertebrates. J. Phycol., 23: 469–481

Valenzeno, D. P., Pooler, J. P. (1987). Photodynamic action. BioSci. 37: 270–276

Zar, J. H. (1984). Biostatistical analysis. Prentice-Hall, Inc., Englewood Cliffs, N. J.

Zvalinskii, V. I., Leletkin, V. A., Titlyanov, E. A., Shaposhnikova, M. G. (1980). Photosynthesis and adaptation of corals to irradiance. 2. Oxygen exchange. Photosynthetica (Praha, Czecholslovakia) 14: 422–430