Springer Science and Business Media LLC
Công bố khoa học tiêu biểu
* Dữ liệu chỉ mang tính chất tham khảo
Sắp xếp:
Data-driven predictions and novel hypotheses about zoonotic tick vectors from the genus Ixodes
Springer Science and Business Media LLC - Tập 18 - Trang 1-6 - 2018
With the resurgence of tick-borne diseases such as Lyme disease and the emergence of new tick-borne pathogens such as Powassan virus, understanding what distinguishes vectors from non-vectors, and predicting undiscovered tick vectors is a crucial step towards mitigating disease risk in humans. We aimed to identify intrinsic traits that predict which Ixodes tick species are confirmed or strongly suspected to be vectors of zoonotic pathogens. We focused on the well-studied tick genus Ixodes from which many species are known to transmit zoonotic diseases to humans. We apply generalized boosted regression to interrogate over 90 features for over 240 species of Ixodes ticks to learn what intrinsic features distinguish zoonotic vectors from non-vector species. In addition to better understanding the biological underpinnings of tick vectorial capacity, the model generates a per species probability of being a zoonotic vector on the basis of intrinsic biological similarity with known Ixodes vector species. Our model predicted vector status with over 91% accuracy, and identified 14 Ixodes species with high probabilities (80%) of transmitting infections from animal hosts to humans on the basis of their traits. Distinguishing characteristics of zoonotic tick vectors of Ixodes tick species include several anatomical structures that influence host seeking behavior and blood-feeding efficiency from a greater diversity of host species compared to non-vectors. Overall, these results suggest that zoonotic tick vectors are most likely to be those species where adult females hold a fecundity advantage by producing more eggs per clutch, which develop into larvae that feed on a greater diversity of host species compared to non-vector species. These larvae develop into nymphs whose anatomy are well suited for more efficient and longer feeding times on soft-bodied hosts compared to non-vectors, leading to larger adult females with greater fecundity. In addition to identifying novel, testable hypotheses about intrinsic features driving vectorial capacity across Ixodes tick species, our model identifies particular Ixodes species with the highest probability of carrying zoonotic diseases, offering specific targets for increased zoonotic investigation and surveillance.
Transgenerational effect of drug-mediated inhibition of LSD1 on eye pigment expression in Drosophila
Springer Science and Business Media LLC - Tập 20 - Trang 1-12 - 2020
The Drosophila melanogaster mutant white-mottled is a well-established model for position-effect variegation (PEV). Transposition of the euchromatic white gene into the vicinity of the pericentric heterochromatin caused variegated expression of white due to heterochromatin spreading. The establishment of the euchromatin-heterochromatin boundary and spreading of silencing is regulated by mutually exclusive histone modifications, i.e. the methylations of histone H3 at lysine 9 and lysine 4. Demethylation of H3K4, catalysed by lysine-specific demethylase LSD1, is required for subsequent methylation of H3K9 to establish heterochromatin. LSD1 is therefore essential for heterochromatin formation and spreading. We asked whether drug-mediated inhibition of LSD affects the expression of white and if this induced change can be transmitted to those generations that have never been exposed to the triggering signal, i.e. transgenerational epigenetic inheritance. We used the lysine-specific demethylase 1 (LSD1)-inhibitor Tranylcypromine to investigate its effect on eye colour expression in consecutive generations by feeding the parental and F1 generations of the Drosophila melanogaster mutant white-mottled. Quantitative Western blotting revealed that Tranylcypromine inhibits H3K4-demethylation both in vitro in S2 cells as well as in embryos when used as feeding additive. Eye colour expression in male flies was determined by optical measurement of pigment extracts and qRT-PCR of white gene expression. Flies raised in the presence of Tranylcypromine and its solvent DMSO showed increased eye pigment expression. Beyond that, eye pigment expression was also affected in consecutive generations including F3, which is the first generation without contact with the inhibitor. Our results show that feeding of Tranylcypromine and DMSO caused desilencing of white in treated flies of generation F1. Consecutive generations, raised on standard food without further supplements, are also affected by the drug-induced alteration of histone modifications. Although eye pigment expression eventually returned to the basal state, the observed long-lasting effect points to a memory capacity of previous epigenomes. Furthermore, our results indicate that food compounds potentially affect chromatin modification and hence gene expression and that the alteration is putatively inherited not only parentally but transgenerationally.
Palaeoenvironmental drivers of vertebrate community composition in the Belly River Group (Campanian) of Alberta, Canada, with implications for dinosaur biogeography
Springer Science and Business Media LLC - Tập 16 - Trang 1-35 - 2016
The Belly River Group of southern Alberta is one of the best-sampled Late Cretaceous terrestrial faunal assemblages in the world. This system provides a high-resolution biostratigraphic record of terrestrial vertebrate diversity and faunal turnover, and it has considerable potential to be a model system for testing hypotheses of dinosaur palaeoecological dynamics, including important aspects of palaeoecommunity structure, trophic interactions, and responses to environmental change. Vertebrate fossil microsites (assemblages of small bones and teeth concentrated together over a relatively short time and thought to be representative of community composition) offer an unparalleled dataset to better test these hypotheses by ameliorating problems of sample size, geography, and chronostratigraphic control that hamper other palaeoecological analyses. Here, we assembled a comprehensive relative abundance dataset of microsites sampled from the entire Belly River Group and performed a series of analyses to test the influence of environmental factors on site and taxon clustering, and assess the stability of faunal community composition both temporally and spatially. We also test the idea that populations of large dinosaur taxa were particularly sensitive to small-scale environmental gradients, such as the paralic (coastal) to alluvial (inland) regimes present within the time-equivalent depositional basin of the upper Oldman and lower Dinosaur Park Formations. Palaeoenvironment (i.e. reconstructed environmental conditions, related to relative amount of alluvial, fluvial, and coastal influence in associated sedimentary strata) was found to be strongly associated with clustering of sites by relative-abundance faunal assemblages, particularly in relation to changes in faunal assemblage composition and marine-terrestrial environmental transitions. Palaeogeography/palaeolandscape were moderately associated to site relative abundance assemblage clustering, with depositional setting and time (i.e. vertical position within stratigraphic unit) more weakly associated. Interestingly, while vertebrate relative abundance assemblages as a whole were strongly correlated with these marine-terrestrial transitions, the dinosaur communities do not appear to be particularly sensitive to them. This analysis confirms that depositional setting (i.e. the sediment type/sorting and associated characteristics) has little effect on faunal assemblage composition, in contrast to the effect of changes in the broader palaeoenvironment (e.g. upper vs. lower coastal plain, etc.), with marine-terrestrial transitions driving temporal faunal dynamics within the Belly River Group. The similarity of the dinosaur faunal assemblages between the time-equivalent portions of the Dinosaur Park Formation and Oldman Formation suggests that either these palaeoenvironments are more similar than characterized in the literature, or that the dinosaurs are less sensitive to variation in palaeoenvironment than has often been suggested. A lack of sensitivity to subtle environmental gradients casts doubt on these forces acting as a driver of altitudinal zonation of dinosaur communities in the Late Cretaceous of North America.
Evidence for functional convergence in genes upregulated by herbivores ingesting plant secondary compounds
Springer Science and Business Media LLC - Tập 14 Số 1 - Trang 23 - 2014
Foraging dispersion of Ryukyu flying-foxes and relationships with fig abundance in East-Asian subtropical island forests
Springer Science and Business Media LLC - Tập 17 - Trang 1-12 - 2017
Figs are widely distributed key resources to many tropical-subtropical animals, and flying-foxes are major consumers and seed dispersers of figs. Bat-fig interrelationships, however, may vary among species differing in fruiting traits, i.e., bat- versus bird-dispersed figs. We examined Ryukyu flying-fox foraging dispersion and the relationships with tree species composition and fig abundance in forests of Iriomote Island. Bat foraging dispersion showed no spatial patterns with respect to different areas of the island, and was not explained by heterogeneity, density, or basal area (BA) of total trees, nor by relative density or BA of fruiting trees or total fruiting figs among sites. Instead, bat densities were positively dependent on the relative density of total figs, and particularly the relative BA of bat-dispersed figs Ficus septica and F. variegata. Both species were dominant figs in forests, fruiting asynchronously with long crop seasons, and were used as predominant foods. Bats foraged mostly solitarily and the mean density was in a hump-shaped relationship with crop sizes of the dominant bat-figs. These two species and Ficus benguetensis are larger-sized bat-figs, all contained more seeds, higher dry-pulp mass and water mass, but not necessarily water content. By approximate estimation, higher proportions of seeds of these bat-figs would have been removed from fruits through the bat consumption, than that of small-sized bird-figs like F. virgata, F. superba, and F. microcarpa. The foraging dispersion of Ryukyu flying-foxes in forests depends on the availability of the most abundant bat-figs that serve as predominant foods. Intermediate levels of crop sizes of theses figs appear most fit with their solitary foraging. Our results suggest that as density and BA coverage of these dominant bat-figs are below a certain level, their effectiveness to attract bats may dwindle and so would their chance of dispersal by bats.
The world's richest tadpole communities show functional redundancy and low functional diversity: ecological data on Madagascar's stream-dwelling amphibian larvae
Springer Science and Business Media LLC - Tập 10 - Trang 1-10 - 2010
Functional diversity illustrates the range of ecological functions in a community. It allows revealing the appearance of functional redundancy in communities and processes of community assembly. Functional redundancy illustrates the overlap in ecological functions of community members which may be an indicator of community resilience. We evaluated patterns of species richness, functional diversity and functional redundancy on tadpole communities in rainforest streams in Madagascar. This habitat harbours the world's most species-rich stream tadpole communities which are due to their occurrence in primary habitat of particular interest for functional diversity studies. Species richness of tadpole communities is largely determined by characteristics of the larval habitat (stream structure), not by adult habitat (forest structure). Species richness is positively correlated with a size-velocity gradient of the streams, i.e. communities follow a classical species-area relationship. While widely observed for other taxa, this is an unusual pattern for anuran larvae which usually is expected to be hump-shaped. Along the species richness gradient, we quantified functional diversity of all communities considering the similarity and dissimilarity of species in 18 traits related to habitat use and foraging. Especially species-rich communities were characterised by an overlap of species function, i.e. by functional redundancy. By comparing the functional diversity of the observed communities with functional diversity of random assemblages, we found no differences at low species richness level, whereas observed species-rich communities have lower functional diversity than respective random assemblages. We found functional redundancy being a feature of communities also in primary habitat, what has not been shown before using such a continuous measure. The observed species richness dependent pattern of low functional diversity indicates that communities with low species richness accumulate functional traits randomly, whereas species in species-rich communities are more similar to each other than predicted by random assemblages and therefore exhibit an accumulation of stream-specific functional traits. Beyond a certain species richness level, therefore, stream-specific environmental filters exert influence whereas interspecific competition between species does not influence trait assemblage at any species richness level.
A test of agent-based models as a tool for predicting patterns of pathogen transmission in complex landscapes
Springer Science and Business Media LLC - Tập 13 - Trang 1-12 - 2013
Landscape complexity can mitigate or facilitate host dispersal, influencing patterns of pathogen transmission. Spatial transmission of pathogens through landscapes, therefore, presents an important but not fully elucidated aspect of transmission dynamics. Using an agent-based model (LiNK) that incorporates GIS data, we examined the effects of landscape information on the spatial patterns of host movement and pathogen transmission in a system of long-tailed macaques and their gut parasites. We first examined the role of the landscape to identify any individual or additive effects on host movement. We then compared modeled dispersal distance to patterns of actual macaque gene flow to both confirm our model’s predictions and to understand the role of individual land uses on dispersal. Finally, we compared the rate and the spread of two gastrointestinal parasites, Entamoeba histolytica and E. dispar, to understand how landscape complexity influences spatial patterns of pathogen transmission. LiNK captured emergent properties of the landscape, finding that interaction effects between landscape layers could mitigate the rate of infection in a non-additive way. We also found that the inclusion of landscape information facilitated an accurate prediction of macaque dispersal patterns across a complex landscape, as confirmed by Mantel tests comparing genetic and simulated dispersed distances. Finally, we demonstrated that landscape heterogeneity proved a significant barrier for a highly virulent pathogen, limiting the dispersal ability of hosts and thus its own transmission into distant populations. Landscape complexity plays a significant role in determining the path of host dispersal and patterns of pathogen transmission. Incorporating landscape heterogeneity and host behavior into disease management decisions can be important in targeting response efforts, identifying cryptic transmission opportunities, and reducing or understanding potential for unintended ecological and evolutionary consequences. The inclusion of these data into models of pathogen transmission patterns improves our understanding of these dynamics, ultimately proving beneficial for sound public health policy.
The phylogenetic signal of species co-occurrence in high-diversity shrublands: different patterns for fire-killed and fire-resistant species
Springer Science and Business Media LLC - Tập 12 - Trang 1-11 - 2012
Using phylogenies in community ecology is now commonplace, but typically, studies assume and test for a single common phylogenetic signal for all species in a community, at a given scale. A possibility that remains little-explored is that species differing in demographic or ecological attributes, or facing different selective pressures, show different community phylogenetic patterns, even within the same communities. Here I compare community phylogenetic patterns for fire-killed and fire-resistant Banksia species in the fire-prone shrublands of southwest Australia. Using new Bayesian phylogenies of Banksia, together with ecological trait data and abundance data from 24 field sites, I find that fire regeneration mode influences the phylogenetic and phenotypic signal of species co-occurrence patterns. Fire-killed species (reseeders) show patterns of phylogenetic and phenotypic repulsion consistent with competition-driven niche differentiation, but there are no such patterns for fire-resistant species (resprouters). For pairs of species that differ in fire response, co-occurrence is mediated by environmental filtering based on similarity in edaphic preferences. These results suggest that it may be simplistic to characterize an entire community by a single structuring process, such as competition or environmental filtering. For this reason, community analyses based on pairwise species co-occurrence patterns may be more informative than those based on whole-community structure metrics.
SymbioGBR: a web-based database of Symbiodinium associated with cnidarian hosts on the Great Barrier Reef
Springer Science and Business Media LLC - Tập 13 - Trang 1-9 - 2013
The algal endosymbionts (genus Symbiodinium) associated with scleractinian corals (and other reef invertebrates) have received a lot of research attention in the past decade, particularly as certain host-symbiont associations appear more affected by increasing seawater temperatures than others. With the rapid accumulation of information on the diversity of Symbiodinium, it is becoming increasingly difficult to compare newly acquired Symbiodinium data with existing data to detect patterns of host-symbiont specificity on broader spatial scales. The lack of a general consensus on the classification of Symbiodinium species coupled with the variety of different markers used to identify the genus Symbiodinium (ITS1, ITS2, LSU D1/D2, chloroplast 23S rDNA and psbA minicircle) further complicate direct comparison. The SymbioGBR database compiles all currently available Symbiodinium sequences and associated host information of data collected from the Great Barrier Reef into a single relational database that is accessible via a user-friendly, searchable web-based application (
http://www.SymbioGBR.org
). SymbioGBR allows users to query Symbiodinium types or sequences sourced from various genetic markers (e.g. ITS1, ITS2, LSU D1/D2 and chloroplast 23S) and invertebrate host species to explore their reported associations. In addition, as the database includes sequence information of multiple genetic markers, it allows cross-referencing between conventional (e.g. ITS2 region) and novel markers that exhibit low intragenomic variability (e.g. psbA region). Finally, the database is based on the collection details of individual specimens. Such host-symbiont associations can be assessed quantitatively and viewed in relation to their environmental and geographic context. The SymbioGBR database provides a comprehensive overview of Symbiodinium diversity and host-associations on the Great Barrier Reef. It provides a quick, user-friendly means to compare newly acquired data on Symbiodinium (e.g. raw sequences or characterized Symbiodinium types) with previous data on the diversity of invertebrate host-symbiont associations on the GBR. The inclusion of psbA
ncr
sequence information allows for validation of widely used ITS1/ITS2 markers and their ability to accurately identify relevant sequences. Most importantly, centralization of sequence information from multiple genetic markers will aid the classification of Symbiodinium species diversity and allow researchers to easily compare patterns of host-Symbiodinium associations.
Loss of density-dependence and incomplete control by dominant breeders in a territorial species with density outbreaks
Springer Science and Business Media LLC - Tập 11 - Trang 1-8 - 2011
A territory as a prerequisite for breeding limits the maximum number of breeders in a given area, and thus lowers the proportion of breeders if population size increases. However, some territorially breeding animals can have dramatic density fluctuations and little is known about the change from density-dependent processes to density-independence of breeding during a population increase or an outbreak. We suggest that territoriality, breeding suppression and its break-down can be understood with an incomplete-control model, developed for social breeders and social suppression. We studied density dependence in an arvicoline species, the bank vole, known as a territorial breeder with cyclic and non-cyclic density fluctuations and periodically high densities in different parts of its range. Our long-term data base from 38 experimental populations in large enclosures in boreal grassland confirms that breeding rates are density-regulated at moderate densities, probably by social suppression of subordinate potential breeders. We conducted an experiment, were we doubled and tripled this moderate density under otherwise the same conditions and measured space use, mortality, reproduction and faecal stress hormone levels (FGM) of adult females. We found that mortality did not differ among the densities, but the regulation of the breeding rate broke down: at double and triple densities all females were breeding, while at the low density the breeding rate was regulated as observed before. Spatial overlap among females increased with density, while a minimum territory size was maintained. Mean stress hormone levels were higher in double and triple densities than at moderate density. At low and moderate densities, breeding suppression by the dominant breeders, But above a density-threshold (similar to a competition point), the dominance of breeders could not be sustained (incomplete control). In our experiment, this point was reached after territories could not shrink any further, while the number of intruders continued to increase with increasing density. Probably suppression becomes too costly for the dominants, and increasing number of other breeders reduces the effectiveness of threats. In wild populations, crossing this threshold would allow for a rapid density increase or population outbreaks, enabling territorial species to escape density-dependency.
Tổng số: 402
- 1
- 2
- 3
- 4
- 5
- 6
- 10