Springer Science and Business Media LLC
2045-8118
Cơ quản chủ quản: BioMed Central Ltd. , BMC
Các bài báo tiêu biểu
Since the first attempts in the 1970s to isolate cerebral microvessel endothelial cells (CECs) in order to model the blood–brain barrier (BBB)
The blood–brain barrier is playing a critical role in controlling the influx and efflux of biological substances essential for the brain’s metabolic activity as well as neuronal function. Thus, the functional and structural integrity of the BBB is pivotal to maintain the homeostasis of the brain microenvironment. The different cells and structures contributing to developing this barrier are summarized along with the different functions that BBB plays at the brain–blood interface. We also explained the role of shear stress in maintaining BBB integrity. Furthermore, we elaborated on the clinical aspects that correlate between BBB disruption and different neurological and pathological conditions. Finally, we discussed several biomarkers that can help to assess the BBB permeability and integrity in-vitro or in-vivo and briefly explain their advantages and disadvantages.
The blood–brain barrier (BBB) is a selective endothelial interface that controls trafficking between the bloodstream and brain interstitial space. During development, the BBB arises as a result of complex multicellular interactions between immature endothelial cells and neural progenitors, neurons, radial glia, and pericytes. As the brain develops, astrocytes and pericytes further contribute to BBB induction and maintenance of the BBB phenotype. Because BBB development, maintenance, and disease states are difficult and time-consuming to study
The choroid plexuses are the interface between the blood and the cerebrospinal fluid (CSF) contained within the ventricular spaces of the central nervous system. The tight junctions linking adjacent cells of the choroidal epithelium create a physical barrier to paracellular movement of molecules. Multispecific efflux transporters as well as drug-metabolizing and antioxidant enzymes functioning in these cells contribute to a metabolic barrier. These barrier properties reflect a neuroprotective function of the choroid plexus. The choroid plexuses develop early during embryogenesis and provide pivotal control of the internal environment throughout development when the brain is especially vulnerable to toxic insults. Perinatal injuries like hypoxia and trauma, and exposure to drugs or toxic xenobiotics can have serious consequences on neurogenesis and long-term development. The present study describes the developmental expression pattern of genes involved in the neuroprotective functions of the blood–CSF barrier.
The transcriptome of rat lateral ventricular choroid plexuses isolated from fifteen-day-old embryos, nineteen-day old fetuses, two-day old pups, and adults was analyzed by a combination of Affymetrix microarrays, Illumina RNA-Sequencing, and quantitative RT-PCR.
Genes coding for proteins involved in junction formation are expressed early during development. Overall perinatal expression levels of genes involved in drug metabolism and antioxidant mechanisms are similar to, or higher than levels measured in adults. A similar developmental pattern was observed for multispecific efflux transporter genes of the
This transcriptomic analysis suggests relatively well–established neuroprotective mechanisms at the blood-CSF barrier throughout development of the rat. The expression of many transcription factors early in development raises the possibility of additional protection for the vulnerable developing brain, should the fetus or newborn be exposed to drugs or other xenobiotics.