Springer Science and Business Media LLC

Công bố khoa học tiêu biểu

* Dữ liệu chỉ mang tính chất tham khảo

Sắp xếp:  
A new look at cerebrospinal fluid movement
Springer Science and Business Media LLC - - 2014
Darko Orešković, Marijan Klarica
The quantitative motion analysis using portable gait rhythmogram after CSF drainage in the patients with idiopathic normal pressure hydrocephalus
Springer Science and Business Media LLC - - 2015
Makiko Yogo, Shusaku Omoto, Masayo Morita, Masahiko Suzuki
Imaging features associated with idiopathic normal pressure hydrocephalus have high specificity even when comparing with vascular dementia and atypical parkinsonism
Springer Science and Business Media LLC - Tập 18 - Trang 1-10 - 2021
David Fällmar, Oliver Andersson, Lena Kilander, Malin Löwenmark, Dag Nyholm, Johan Virhammar
Vascular dementia (VaD) and atypical parkinsonism often present with symptoms that can resemble idiopathic normal pressure hydrocephalus (iNPH) and enlarged cerebral ventricles, and can be challenging differential diagnoses. The aim was to investigate frequencies of imaging features usually associated with iNPH and their radiological diagnostic accuracy in a sample containing the relevant differential diagnoses VaD, progressive supranuclear palsy (PSP), multiple system atrophy parkinsonian type (MSA-P), and healthy controls. Nine morphological imaging features usually associated with iNPH were retrospectively investigated in MR images of 55 patients with shunt-responsive iNPH, 32 patients with VaD, 30 patients with PSP, 27 patients with MSA-P, and 39 age-matched healthy controls. Logistic regression and receiver operating characteristic curves were used to assess diagnostic accuracy, sensitivity, and specificity for each imaging finding. In a logistic regression model using iNPH diagnosis as a dependent variable, the following imaging features contributed significantly to the model: callosal angle (OR = 0.95 (0.92–0.99), p = 0.012), Evans’ index * 100 (OR = 1.51 (1.23–1.86), p < 0.001), enlarged Sylvian fissures (OR = 6.01 (1.42–25.40), p = 0.015), and focally enlarged sulci (OR = 10.18 (1.89–55.02), p = 0.007). Imaging features with 95% specificity for iNPH were: callosal angle ≤ 71°, temporal horns ≥ 7 mm, Evans’ index ≥ 0.37, iNPH Radscale ≥ 9, and presence of DESH, bilateral ventricular roof bulgings or focally enlarged sulci. A simplified version of the iNPH Radscale with only four features resulted in equally high diagnostic accuracy as the original iNPH Radscale. There is a notable overlap between some of the commonly used imaging markers regarding iNPH, VaD and atypical parkinsonism, such as PSP. However, this study shows that the specificity of imaging markers usually associated with iNPH was high even when comparing with these challenging differential diagnoses. The callosal angle was the single imaging feature with highest diagnostic accuracy to discriminate iNPH from its mimics. A simplified rating scale using only a few selected features could be used with retained specificity.
Sex-specific differences in organic anion transporting polypeptide 1a4 (Oatp1a4) functional expression at the blood–brain barrier in Sprague–Dawley rats
Springer Science and Business Media LLC - Tập 15 - Trang 1-12 - 2018
Hrvoje Brzica, Wazir Abdullahi, Bianca G. Reilly, Patrick T. Ronaldson
Targeting endogenous blood–brain barrier (BBB) transporters such as organic anion transporting polypeptide 1a4 (Oatp1a4) can facilitate drug delivery for treatment of neurological diseases. Advancement of Oatp targeting for optimization of CNS drug delivery requires characterization of sex-specific differences in BBB expression and/or activity of this transporter. In this study, we investigated sex differences in Oatp1a4 functional expression at the BBB in adult and prepubertal (i.e., 6-week-old) Sprague–Dawley rats. We also performed castration or ovariectomy surgeries to assess the role of gonadal hormones on Oatp1a4 protein expression and transport activity at the BBB. Slco1a4 (i.e., the gene encoding Oatp1a4) mRNA expression and Oatp1a4 protein expression in brain microvessels was determined using quantitative real-time PCR and western blot analysis, respectively. Oatp transport function at the BBB was determined via in situ brain perfusion using [3H]taurocholate and [3H]atorvastatin as probe substrates. Data were expressed as mean ± SD and analyzed via one-way ANOVA followed by the post hoc Bonferroni t-test. Our results showed increased brain microvascular Slco1a4 mRNA and Oatp1a4 protein expression as well as increased brain uptake of [3H]taurocholate and [3H]atorvastatin in female rats as compared to males. Oatp1a4 expression at the BBB was enhanced in castrated male animals but was not affected by ovariectomy in female animals. In prepubertal rats, no sex-specific differences in brain microvascular Oatp1a4 expression were observed. Brain accumulation of [3H]taurocholate in male rats was increased following castration as compared to controls. In contrast, there was no difference in [3H]taurocholate brain uptake between ovariectomized and control female rats. These novel data confirm sex-specific differences in BBB Oatp1a4 functional expression, findings that have profound implications for treatment of CNS diseases. Studies are ongoing to fully characterize molecular pathways that regulate sex differences in Oatp1a4 expression and activity.
Transporter-mediated L-glutamate elimination from cerebrospinal fluid: possible involvement of excitatory amino acid transporters expressed in ependymal cells and choroid plexus epithelial cells
Springer Science and Business Media LLC - Tập 12 - Trang 1-11 - 2015
Shin-ichi Akanuma, Tatsuhiko Sakurai, Masanori Tachikawa, Yoshiyuki Kubo, Ken-ichi Hosoya
L-Glutamate (L-Glu) is the major excitatory neurotransmitter in the CNS, and its level in cerebrospinal fluid (CSF) is reported to be increased in neuroexcitatory diseases such as epilepsy. Since L-Glu concentration in the CSF is reported to be lower than that in plasma, it has been proposed that some mechanisms of L-Glu clearance from the CSF operate in the brain. The purpose of this study was to elucidate the major pathway of L-Glu elimination from rat CSF and the transporters responsible. Protein expression and localization of excitatory amino acid transporters were examined by immunohistochemical analysis using specific antibodies. In vivo elimination of L-Glu from rat CSF was evaluated by intracerebroventricular administration. An L-Glu uptake study by using primary-cultured rat ependymal cells and isolated rat choroid plexus was performed to characterize L-Glu transport mechanisms. An immunohistochemical analysis has shown that excitatory amino acid transporter (EAAT) 1 and EAAT3, which are D-aspartate-sensitive and kainate-insensitive L-Glu transporters, are localized on the CSF-side of rat ependymal cells and choroid plexus epithelial cells, respectively. In contrast, the kainate-sensitive L-Glu transporter, EAAT2, is not expressed in these cells. In vivo L-Glu elimination clearance from the rat CSF (189 μL/(min · rat)) was 23-fold higher than the CSF bulk flow rate, indicating that facilitative process(es) are involved in L-Glu elimination from the CSF. The in vivo [3H]L-Glu elimination from the CSF was significantly inhibited by unlabeled L-Glu and D-aspartate, but not kainate. Moreover, unlabeled L-Glu and D-aspartate inhibited [3H]L-Glu uptake by rat ependymal cells and choroid plexus epithelial cells, whereas kainate had little effect. It is suggested that EAAT1 in ependymal cells and EAAT3 in choroid plexus epithelial cells participate in L-Glu elimination from the CSF.
Direction and magnitude of cerebrospinal fluid flow vary substantially across central nervous system diseases
Springer Science and Business Media LLC - Tập 18 - Trang 1-18 - 2021
Per Kristian Eide, Lars Magnus Valnes, Erika Kristina Lindstrøm, Kent-Andre Mardal, Geir Ringstad
Several central nervous system diseases are associated with disturbed cerebrospinal fluid (CSF) flow patterns and have typically been characterized in vivo by phase-contrast magnetic resonance imaging (MRI). This technique is, however, limited by its applicability in space and time. Phase-contrast MRI has yet to be compared directly with CSF tracer enhanced imaging, which can be considered gold standard for assessing long-term CSF flow dynamics within the intracranial compartment. Here, we studied patients with various CSF disorders and compared MRI biomarkers of CSF space anatomy and phase-contrast MRI at level of the aqueduct and cranio-cervical junction with dynamic intrathecal contrast-enhanced MRI using the contrast agent gadobutrol as CSF tracer. Tracer enrichment of cerebral ventricles was graded 0–4 by visual assessment. An intracranial pressure (ICP) score was used as surrogate marker of intracranial compliance. The study included 94 patients and disclosed marked variation of CSF flow measures across disease categories. The grade of supra-aqueductal reflux of tracer varied, with strong reflux (grades 3–4) in half of patients. Ventricular tracer reflux correlated with stroke volume and aqueductal CSF pressure gradient. CSF flow in the cerebral aqueduct was retrograde (from 4th to 3rd ventricle) in one third of patients, with estimated CSF net flow volume about 1.0 L/24 h. In the cranio-cervical junction, net flow was cranially directed in 78% patients, with estimated CSF net flow volume about 4.7 L/24 h. The present observations provide in vivo quantitative evidence for substantial variation in direction and magnitude of CSF flow, with re-direction of aqueductal flow in communicating hydrocephalus, and significant extra-cranial CSF production. The grading of ventricular reflux of tracer shows promise as a clinical useful method to assess CSF flow pattern disturbances in patients.
A computerized neuropsychological test battery designed for idiopathic normal pressure hydrocephalus
Springer Science and Business Media LLC - Tập 11 - Trang 1-13 - 2014
Anders Behrens, Anders Eklund, Eva Elgh, Cynthia Smith, Michael A Williams, Jan Malm
A tool for standardized and repeated neuropsychological assessments in patients with idiopathic normal pressure hydrocephalus (INPH) is needed. The objective of this study was to develop a computerized neuropsychological test battery designed for INPH and to evaluate its reliability, validity and patient’s ability to complete the tests. Based on a structured review of the literature on neuropsychological testing in INPH, the eight tests most sensitive to the INPH cognitive profile were implemented in a computerized format. The Geriatric Depression Scale (GDS) was also included. Tests were presented on a touch-screen monitor, with animated instructions and speaker sound. The battery was evaluated with the following cohorts: A. Test-retest reliability, 44 healthy elderly; B. Validity against standard pen and pencil testing, 28 patients with various cognitive impairments; C. Ability to complete test battery, defined as completion of at least seven of the eight tests, 40 investigated for INPH. A. All except the figure copy test showed good test-retest reliability, r = 0.67-0.90; B. A high correlation was seen between conventional and computerized tests (r = 0.66-0.85) except for delayed recognition and figure copy task; C. Seventy-eight percent completed the computerized battery; Patients diagnosed with INPH (n = 26) performed worse on all tests, including depression score, compared to healthy controls. A new computerized neuropsychological test battery designed for patients with communicating hydrocephalus and INPH was introduced. Its reliability, validity for general cognitive impairment and completion rate for INPH was promising. After exclusion of the figure copy task, the battery is ready for clinical evaluation and as a next step we suggest validation for INPH and a comparison before and after shunt surgery. ClinicalTrials.org NCT01265251 .
Tachycardia and hypertension enhance tracer efflux from the spinal cord
Springer Science and Business Media LLC - Tập 18 - Trang 1-15 - 2021
Shinuo Liu, Lynne E. Bilston, Marcus A. Stoodley, Sarah J. Hemley
Disruption of cerebrospinal fluid (CSF)/interstitial fluid (ISF) exchange in the spinal cord is likely to contribute to central nervous system (CNS) diseases that involve abnormal fluid accumulation, including spinal cord oedema and syringomyelia. However, the physiological factors that govern fluid transport in the spinal cord are poorly understood. The aims of this study were to determine the effects of cardiac pulsations and respiration on tracer signal increase, indicative of molecular movement following infusion into the spinal cord grey or white matter. In Sprague Dawley rats, physiological parameters were manipulated such that the effects of spontaneous breathing (generating alternating positive and negative intrathoracic pressures), mechanical ventilation (positive intrathoracic pressure only), tachycardia (heart atrial pacing), as well as hypertension (pharmacologically induced) were separately studied. Since fluid outflow from the spinal cord cannot be directly measured, we assessed the molecular movement of fluorescent ovalbumin (AFO-647), visualised by an increase in tracer signal, following injection into the cervicothoracic spinal grey or white matter. Tachycardia and hypertension increased AFO-647 tracer efflux, while the concomitant negative and positive intrathoracic pressures generated during spontaneous breathing did not when compared to the positive-pressure ventilated controls. Following AFO-647 tracer injection into the spinal grey matter, increasing blood pressure and heart rate resulted in increased tracer movement away from the injection site compared to the hypotensive, bradycardic animals (hypertension: p = 0.05, tachycardia: p < 0.0001). Similarly, hypertension and tachycardia produced greater movement of AFO-647 tracer longitudinally along the spinal cord following injection into the spinal white matter (p < 0.0001 and p = 0.002, respectively). Tracer efflux was strongly associated with all blood vessel types. Arterial pulsations have profound effects on spinal cord interstitial fluid homeostasis, generating greater tracer efflux than intrathoracic pressure changes that occur over the respiratory cycle, demonstrated by increased craniocaudal CSF tracer movement in the spinal cord parenchyma.
Repeated lumbar punctures within 3 days may affect CSF biomarker levels
Springer Science and Business Media LLC - Tập 16 Số 1 - 2019
Martin Olsson, Johan Ärlig, Jan Hedner, Kaj Blennow, Henrik Zetterberg
Abstract

Lumbar puncture (LP) is a common way of collecting cerebrospinal fluid (CSF) both in the clinic and in research. In this extension of a study on the relationship between sleep deprivation and CSF biomarkers for Alzheimer’s disease, we investigated CSF biomarker dynamics in relation to rebound sleep after sleep deprivation. Two LPs were performed within 3 days in 13 healthy volunteers. We noticed an unexpected sharp rise in biomarker concentrations in the second sample and therefore repeated the experiment, but without sleep intervention, in four additional individuals. The findings were similar in these subjects, suggesting an inherent methodological problem with repeated LPs. The result corroborates findings in studies with repeated CSF collection via indwelling lumbar catheters, and needs to be addressed in, for instance, pharmacodynamic studies employing these techniques.

Are CSF CXCL13 concentrations solely dependent on intrathecal production? A commentary on “Chemokine CXCL13 in serum, CSF, and blood–CSF barrier function”
Springer Science and Business Media LLC - Tập 18 - Trang 1-4 - 2021
Krista D. DiSano, Francesca Gilli, Andrew R. Pachner
Pilz et al. (Fluids Barriers CNS 17:7; 2020) investigated how CSF CXCL13 concentrations are influenced by CXCL13 serum concentrations and blood-CSF barrier (BCSFB) function, comparing the impact of serum CXCL13 levels and Qalbumin (CSF albumin/serum albumin) on CSF CXCL13 among patients with CNS inflammation categorized as CXCL13 negative, low, medium, or high. Among all CXCL13 groups, their results showed no correlation between CSF CXCL13 concentrations and serum CXCL13 or Qalbumin. The authors argue that, in contrast to other proteins, CXCL13 passage across the BCSFB does not occur, regardless of BCSFB function, and is instead solely influenced by intrathecal production. In contrast to the authors’ findings, in our studies including both non-inflammatory neurological disorders (NIND; n = 62) and multiple sclerosis (MS) patients we observed a significant correlation between serum CXCL13 concentrations and CSF CXCL13 concentrations. We review several observations which may underlie these contrasting results, including (1) the impact of serum CXCL13 concentrations on CSF CXCL13 in patients with lower intrathecal CXCL13 production and thus lower CXCL13 concentrations (i.e. NIND and MS), (2) the proposed diffusion dynamics of the small molecule CXCL13 across the BCSFB, and (3) differing definitions of negative versus elevated CSF CXCL13 concentrations determined by an assay’s relative sensitivity. In conclusion, we argue that for patients with moderately elevated CSF CXCL13 concentrations, serum CXCL13 concentrations influence CSF CXCL13 levels, and thus the appropriate corrections including incorporation of CSF/serum ratios and Qalbumin values should be utilized.
Tổng số: 523   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 10