Springer Science and Business Media LLC
Công bố khoa học tiêu biểu
Sắp xếp:
Ptpn20 deletion in H-Tx rats enhances phosphorylation of the NKCC1 cotransporter in the choroid plexus: an evidence of genetic risk for hydrocephalus in an experimental study Abstract
Background
Congenital hydrocephalus occurs with some inheritable characteristics, but the mechanisms of its development remain poorly understood. Animal models provide the opportunity to identify potential genetic causes in this condition. The Hydrocephalus-Texas (H-Tx) rat strain is one of the most studied animal models for investigating the causative genetic alterations and analyzing downstream pathogenetic mechanisms of congenital hydrocephalus.
Methods
Comparative genomic hybridization (CGH) array on non-hydrocephalic and hydrocephalic H-Tx rats was used to identify causative genes of hydrocephalus. Targeted gene knockout mice were generated by CRISPR/Cas9 to study the role of this gene in hydrocephalus.
Results
CGH array revealed a copy number loss in chromosome 16p16 region in hydrocephalic H-Tx rats at 18 days gestation, encompassing the protein tyrosine phosphatase non-receptor type 20 (Ptpn20 ), a non-receptor tyrosine phosphatase, without change in most non-hydrocephalic H-Tx rats. Ptpn20 -knockout (Ptpn20 −/− ) mice were generated and found to develop ventriculomegaly at 8 weeks. Furthermore, high expression of phosphorylated Na-K-Cl cotransporter 1 (pNKCC1) was identified in the choroid plexus (CP) epithelium of mice lacking Ptpn20 from 8 weeks until 72 weeks.
Conclusions
This study determined the chromosomal location of the hydrocephalus-associated Ptpn20 gene in hydrocephalic H-Tx rats. The high level of pNKCC1 mediated by Ptpn20 deletion in CP epithelium may cause overproduction of cerebrospinal fluid and contribute to the formation of hydrocephalus in Ptpn20 −/− mice. Ptpn20 may be a potential therapeutic target in the treatment of hydrocephalus.
Springer Science and Business Media LLC - - 2022
Correction to: A26 Cerebrospinal fluid outflow resistance is increased following small-moderate ischaemic stroke
Springer Science and Business Media LLC - Tập 16 - Trang 1-2 - 2019
After publication of this supplement [1], it was brought to our attention that in the results the line “(0.3 ± 0.04 mmHg/μl/min, and 0.54 ± 0.04 mmHg/μl/min, respectively)” should actually read “(0.54 ± 0.04 mmHg/μl/min and 0.3 ± 0.04 mmHg/μl/min, respectively)”.
The CXCL13/CXCR5-chemokine axis in neuroinflammation: evidence of CXCR5+CD4 T cell recruitment to CSF
Springer Science and Business Media LLC - Tập 18 - Trang 1-9 - 2021
C-X-C chemokine ligand 13 (CXCL13) is frequently elevated in cerebrospinal fluid (CSF) in a variety of inflammatory central nervous system (CNS) diseases, has been detected in meningeal B cell aggregates in brain tissues of multiple sclerosis patients, and proposedly recruits B cells into the inflamed CNS. Besides B cells also follicular helper T (Tfh) cells express the cognate receptor C-X-C chemokine receptor type 5 (CXCR5) and follow CXCL13 gradients in lymphoid tissues. These highly specialized B cell helper T cells are indispensable for B cell responses to infection and vaccination and involved in autoimmune diseases. Phenotypically and functionally related circulating CXCR5+CD4 T cells occur in blood. Their co-recruitment to the inflamed CSF is feasible but unresolved. We approached this question with a retrospective study including data of all patients between 2017 and 2019 of whom immune phenotyping data of CXCR5 expression and CSF CXCL13 concentrations were available. Discharge diagnoses and CSF laboratory parameters were retrieved from records. Patients were categorized as pyogenic/aseptic meningoencephalitis (ME, n = 29), neuroimmunological diseases (NIMM, n = 22), and non-inflammatory neurological diseases (NIND, n = 6). ANOVA models and Spearman’s Rank-Order correlation were used for group comparisons and associations of CXCL13 levels with immune phenotyping data. In fact, intrathecal CXCL13 elevations strongly correlated with CXCR5+CD4 T cell frequencies in the total cohort (p < 0.0001, r = 0.59), and ME (p = 0.003, r = 0.54) and NIMM (p = 0.043, r = 0.44) patients. Moreover, the ratio of CSF-to-peripheral blood (CSF/PB) frequencies of CXCR5+CD4 T cells strongly correlated with CXCL13 levels both in the total cohort (p = 0.001, r = 0.45) and ME subgroup (p = 0.005, r = 0.50), indicating selective accumulation. ME, NIMM and NIND groups differed with regard to CSF cell counts, albumin quotient, intrathecal IgG, CXCL13 elevations and CXCR5+CD4 T cells, which were higher in inflammatory subgroups. The observed link between intrathecal CXCL13 elevations and CXCR5+CD4 T cell frequencies does not prove but suggests recruitment of possible professional B cell helpers to the inflamed CSF. This highlights CSF CXCR5+CD4 T cells a key target and potential missing link to the poorly understood phenomenon of intrathecal B cell and antibody responses with relevance for infection control, chronic inflammation and CNS autoimmunity.
Kaolin-induced chronic hydrocephalus accelerates amyloid deposition and vascular disease in transgenic rats expressing high levels of human APP
Springer Science and Business Media LLC - Tập 12 Số 1 - 2015
Chemically defined human vascular laminins for biologically relevant culture of hiPSC-derived brain microvascular endothelial cells
Springer Science and Business Media LLC - Tập 17 - Trang 1-16 - 2020
In recent years, differentiation of human induced pluripotent stem cells (hiPSCs) into brain-specific microvascular endothelial cells (iBMECs) has frequently been used to model the blood–brain barrier (BBB). However, there are limitations in the use of iBMECs for in vitro studies, such as transendothelial electrical resistance (TEER) instability, weak junctional expression of VE-cadherin, and lack of proper fluid shear stress response. In vivo, the basement membrane (BM) composition of the BBB evolves throughout development, and laminins become the dominant component of the mature vascular BM. However, laminin isoforms of the endothelial BM have not been used for culture of differentiated iBMECs. The main goal of this study is to investigate the effect of different laminin isoforms of the endothelial BM on iBMEC functionality and to determine whether better recapitulation of the physiological BM in vitro can address the aforementioned limitations of iBMECs. Using a previously reported method, hiPSCs were differentiated into iBMECs. The influence of main laminins of the endothelial BM, LN 411 and LN 511, on iBMEC functionality was studied and compared to a collagen IV and fibronectin mixture (CN IV-FN). Quantitative RT-PCR, immunocytochemistry, and TEER measurement were utilized to assess gene and protein expression and barrier properties of iBMECs on different extracellular matrices. Single-channel microfluidic devices were used to study the effect of shear stress on iBMECs. LN 511, but not LN 411, improved iBMEC barrier properties and resulted in more sustained TEER stability. Immunocytochemistry showed improved junctional protein expression compared to iBMECs cultured on CN IV-FN. iBMECs cultured on LN 511 showed a reduction of stress fibers, indicating resting endothelial phenotype, whereas gene expression analysis revealed upregulation of multiple genes involved in endothelial activation in iBMECs on CN IV-FN. Finally, culturing iBMECs on LN 511 enhanced physiological responses to shear stress, including morphological changes and enhanced junctional protein association. LN 511 improves the functionality and long-term barrier stability of iBMECs. Our findings suggest that incorporation of physiologically relevant LN 511 in iBMEC culture would be beneficial for disease modeling applications and BBB-on-a-chip platforms that accommodate fluid flow.
Pathological mitochondria in neurons and perivascular astrocytic endfeet of idiopathic normal pressure hydrocephalus patients Abstract
Background
A growing body of evidence suggests that the accumulation of amyloid-β and tau (HPτ) in the brain of patients with the dementia subtype idiopathic normal pressure hydrocephalus (iNPH) is associated with delayed extravascular clearance of metabolic waste. Whether also clearance of intracellular debris is affected in these patients needs to be examined. Hypothetically, defective extra- and intra-cellular clearance of metabolites may be instrumental in the neurodegeneration and dementia characterizing iNPH. This study explores whether iNPH is associated with altered mitochondria phenotype in neurons and astrocytes.
Methods
Cortical brain biopsies of 9 reference (REF) individuals and 30 iNPH patients were analyzed for subcellular distribution and morphology of mitochondria using transmission electron microscopy. In neuronal soma of REF and iNPH patients, we identified normal, pathological and clustered mitochondria, mitochondria-endoplasmic reticulum contact sites and autophagic vacuoles. We also differentiated normal and pathological mitochondria in pre- and post-synaptic nerve terminals, as well as in astrocytic endfoot processes towards vessels.
Results
We found a high prevalence of pathological mitochondria in neuronal soma and pre- and post-synaptic terminals, as well as increased mitochondrial clustering, and altered number of mitochondria-endoplasmic reticulum contact sites in iNPH. Non-fused autophagic vacuoles were more abundant in neuronal soma of iNPH patients, suggestive of cellular clearance failure. Moreover, the length of postsynaptic densities was reduced in iNPH, potentially related to reduced synaptic activity. In astrocytic endfoot processes, we also found increased number, area and area fraction of pathological mitochondria in iNPH patients. The proportion of pathological mitochondria correlated significantly with increasing degree of astrogliosis and reduced perivascular expression of aquaporin-4 (AQP4), assessed by light microscopy immunohistochemistry.
Conclusion
Our results provide evidence of mitochondrial pathology and signs of impaired cellular clearance in iNPH patients. The results indicate that iNPH is a neurodegenerative disease with close similarity to Alzheimer’s disease.
Springer Science and Business Media LLC - Tập 16 Số 1 - 2019
The legacy of Malcolm Beverley Segal (1937–2019) on the science and fields concerned with choroid plexus and cerebrospinal fluid physiology
Springer Science and Business Media LLC - Tập 16 - Trang 1-6 - 2019
This article highlights the scientific achievements, professional career, and personal interactions of Malcolm B. Segal who passed away in July this year. Born in 1937 in Goodmayes, Essex, UK, Segal rose to the Chairman position in the Division of Physiology at United Medical and Dental School of Guy’s and St. Thomas’ Hospitals, retiring in 2006 after his long professional career in biomedical science. Being trained in Hugh Davson’s laboratory, Segal became one of the pioneers in research on cerebrospinal fluid physiology and the choroid plexus. During the course of his career, Segal himself trained a number of young scientists and collaborated with many colleagues around the world, making long-lasting friendships along the way. In addition to his professional accomplishments as a researcher and educator, Segal was an avid sailor and wine connoisseur, and enjoyed teaching classes on navigation and wine tasting.
Decreased CSF clearance and increased brain amyloid in Alzheimer’s disease
Springer Science and Business Media LLC - Tập 19 - Trang 1-9 - 2022
In sporadic Alzheimer’s disease (AD), brain amyloid-beta (Aβ) deposition is believed to be a consequence of impaired Aβ clearance, but this relationship is not well established in living humans. CSF clearance, a major feature of brain glymphatic clearance (BGC), has been shown to be abnormal in AD murine models. MRI phase contrast and intrathecally delivered contrast studies have reported reduced CSF flow in AD. Using PET and tau tracer 18F-THK5117, we previously reported that the ventricular CSF clearance of the PET tracer was reduced in AD and associated with elevated brain Aβ levels. In the present study, we use two PET tracers, 18F-THK5351 and 11C-PiB to estimate CSF clearance calculated from early dynamic PET frames in 9 normal controls and 15 AD participants. we observed that the ventricular CSF clearance measures were correlated (r = 0.66, p < 0.01), with reductions in AD of 18 and 27%, respectively. We also replicated a significant relationship between ventricular CSF clearance (18F-THK5351) and brain Aβ load (r = − 0.64, n = 24, p < 0.01). With a larger sample size, we extended our observations to show that reduced CSF clearance is associated with reductions in cortical thickness and cognitive performance. Overall, the findings support the hypothesis that failed CSF clearance is a feature of AD that is related to Aβ deposition and to the pathology of AD. Longitudinal studies are needed to determine whether failed CSF clearance is a predictor of progressive amyloidosis or its consequence.
Protein profiling reveals inter-individual protein homogeneity of arachnoid cyst fluid and high qualitative similarity to cerebrospinal fluid
Springer Science and Business Media LLC - Tập 8 - Trang 1-12 - 2011
The mechanisms behind formation and filling of intracranial arachnoid cysts (AC) are poorly understood. The aim of this study was to evaluate AC fluid by proteomics to gain further knowledge about ACs. Two goals were set: 1) Comparison of AC fluid from individual patients to determine whether or not temporal AC is a homogenous condition; and 2) Evaluate the protein content of a pool of AC fluid from several patients and qualitatively compare this with published protein lists of cerebrospinal fluid (CSF) and plasma. AC fluid from 15 patients with temporal AC was included in this study. In the AC protein comparison experiment, AC fluid from 14 patients was digested, analyzed by LC-MS/MS using a semi-quantitative label-free approach and the data were compared by principal component analysis (PCA) to gain knowledge of protein homogeneity of AC. In the AC proteome evaluation experiment, AC fluid from 11 patients was pooled, digested, and fractionated by SCX chromatography prior to analysis by LC-MS/MS. Proteins identified were compared to published databases of proteins identified from CSF and plasma. AC fluid proteins not found in these two databases were experimentally searched for in lumbar CSF taken from neurologically-normal patients, by a targeted protein identification approach called MIDAS (Multiple Reaction Monitoring (MRM) initiated detection and sequence analysis). We did not identify systematic trends or grouping of data in the AC protein comparison experiment, implying low variability between individual proteomic profiles of AC. In the AC proteome evaluation experiment, we identified 199 proteins. When compared to previously published lists of proteins identified from CSF and plasma, 15 of the AC proteins had not been reported in either of these datasets. By a targeted protein identification approach, we identified 11 of these 15 proteins in pooled CSF from neurologically-normal patients, demonstrating that the majority of abundant proteins in AC fluid also can be found in CSF. Compared to plasma, as many as 104 proteins in AC were not found in the list of 3017 plasma proteins. Based on the protein content of AC fluid, our data indicate that temporal AC is a homogenous condition, pointing towards a similar AC filling mechanism for the 14 patients examined. Most of the proteins identified in AC fluid have been identified in CSF, indicating high similarity in the qualitative protein content of AC to CSF, whereas this was not the case between AC and plasma. This indicates that AC is filled with a liquid similar to CSF. As far as we know, this is the first proteomics study that explores the AC fluid proteome.
Breaking barriers: exploring mechanisms behind opening the blood–brain barrier
Springer Science and Business Media LLC - Tập 20 - Trang 1-20 - 2023
The blood–brain barrier (BBB) is a selectively permeable membrane that separates the bloodstream from the brain. While useful for protecting neural tissue from harmful substances, brain-related diseases are difficult to treat due to this barrier, as it also limits the efficacy of drug delivery. To address this, promising new approaches for enhancing drug delivery are based on disrupting the BBB using physical means, including optical/photothermal therapy, electrical stimulation, and acoustic/mechanical stimulation. These physical mechanisms can temporarily and locally open the BBB, allowing drugs and other substances to enter. Focused ultrasound is particularly promising, with the ability to focus energies to targeted, deep-brain regions. In this review, we examine recent advances in physical approaches for temporary BBB disruption, describing their underlying mechanisms as well as evaluating the utility of these physical approaches with regard to their potential risks and limitations. While these methods have demonstrated efficacy in disrupting the BBB, their safety, comparative efficacy, and practicality for clinical use remain an ongoing topic of research.
Tổng số: 523
- 1
- 2
- 3
- 4
- 5
- 6
- 53