Modeling the blood–brain barrier using stem cell sources
Tóm tắt
The blood–brain barrier (BBB) is a selective endothelial interface that controls trafficking between the bloodstream and brain interstitial space. During development, the BBB arises as a result of complex multicellular interactions between immature endothelial cells and neural progenitors, neurons, radial glia, and pericytes. As the brain develops, astrocytes and pericytes further contribute to BBB induction and maintenance of the BBB phenotype. Because BBB development, maintenance, and disease states are difficult and time-consuming to study
Từ khóa
Tài liệu tham khảo
Nakao T, Ishizawa A, Ogawa R: Observations of vascularization in the spinal cord of mouse embryos, with special reference to development of boundary membranes and perivascular spaces. Anat Rec. 1988, 221: 663-677. 10.1002/ar.1092210212.
Nagase T, Nagase M, Yoshimura K, Fujita T, Koshima I: Angiogenesis within the developing mouse neural tube is dependent on sonic hedgehog signaling: possible roles of motor neurons. Genes Cells. 2005, 10: 595-604. 10.1111/j.1365-2443.2005.00861.x.
Flamme I, Frolich T, Risau W: Molecular mechanisms of vasculogenesis and embryonic angiogenesis. J Cell Physiol. 1997, 173: 206-210. 10.1002/(SICI)1097-4652(199711)173:2<206::AID-JCP22>3.0.CO;2-C.
Bader BL, Rayburn H, Crowley D, Hynes RO: Extensive vasculogenesis, angiogenesis, and organogenesis precede lethality in mice lacking all alpha v integrins. Cell. 1998, 95: 507-519. 10.1016/S0092-8674(00)81618-9.
Virgintino D, Girolamo F, Errede M, Capobianco C, Robertson D, Stallcup WB, Perris R, Roncali L: An intimate interplay between precocious, migrating pericytes and endothelial cells governs human fetal brain angiogenesis. Angiogenesis. 2007, 10: 35-45. 10.1007/s10456-006-9061-x.
Daneman R, Agalliu D, Zhou L, Kuhnert F, Kuo CJ, Barres BA: Wnt/beta-catenin signaling is required for CNS, but not non-CNS, angiogenesis. Proc Natl Acad Sci U S A. 2009, 106: 641-646. 10.1073/pnas.0805165106.
Daneman R, Zhou L, Kebede AA, Barres BA: Pericytes are required for blood–brain barrier integrity during embryogenesis. Nature. 2010, 468: 562-566. 10.1038/nature09513.
Stenman JM, Rajagopal J, Carroll TJ, Ishibashi M, McMahon J, McMahon AP: Canonical Wnt signaling regulates organ-specific assembly and differentiation of CNS vasculature. Science. 2008, 322: 1247-1250. 10.1126/science.1164594.
Weidenfeller C, Svendsen CN, Shusta EV: Differentiating embryonic neural progenitor cells induce blood–brain barrier properties. J Neurochem. 2007, 101: 555-565. 10.1111/j.1471-4159.2006.04394.x.
Zerlin M, Goldman JE: Interactions between glial progenitors and blood vessels during early postnatal corticogenesis: blood vessel contact represents an early stage of astrocyte differentiation. J Comp Neurol. 1997, 387: 537-546. 10.1002/(SICI)1096-9861(19971103)387:4<537::AID-CNE5>3.0.CO;2-3.
Senjo M, Ishibashi T, Terashima T, Inoue Y: Correlation between astrogliogenesis and blood–brain barrier formation: immunocytochemical demonstration by using astroglia-specific enzyme glutathione S-transferase. Neurosci Lett. 1986, 66: 39-42. 10.1016/0304-3940(86)90162-X.
Liebner S, Plate KH: Differentiation of the brain vasculature: the answer came blowing by the Wnt. J Angiogenes Res. 2010, 2: 1-10.1186/2040-2384-2-1.
Liebner S, Corada M, Bangsow T, Babbage J, Taddei A, Czupalla CJ, Reis M, Felici A, Wolburg H, Fruttiger M: Wnt/beta-catenin signaling controls development of the blood–brain barrier. J Cell Biol. 2008, 183: 409-417. 10.1083/jcb.200806024.
Alvarez JI, Dodelet-Devillers A, Kebir H, Ifergan I, Fabre PJ, Terouz S, Sabbagh M, Wosik K, Bourbonniere L, Bernard M: The Hedgehog pathway promotes blood–brain barrier integrity and CNS immune quiescence. Science. 2011, 334: 1727-1731. 10.1126/science.1206936.
Cullen M, Elzarrad MK, Seaman S, Zudaire E, Stevens J, Yang MY, Li X, Chaudhary A, Xu L, Hilton MB: GPR124, an orphan G protein-coupled receptor, is required for CNS-specific vascularization and establishment of the blood–brain barrier. Proc Natl Acad Sci U S A. 2011, 108: 5759-5764. 10.1073/pnas.1017192108.
Anderson KD, Pan L, Yang XM, Hughes VC, Walls JR, Dominguez MG, Simmons MV, Burfeind P, Xue Y, Wei Y: Angiogenic sprouting into neural tissue requires Gpr124, an orphan G protein-coupled receptor. Proc Natl Acad Sci U S A. 2011, 108: 2807-2812. 10.1073/pnas.1019761108.
Kuhnert F, Mancuso MR, Shamloo A, Wang HT, Choksi V, Florek M, Su H, Fruttiger M, Young WL, Heilshorn SC, Kuo CJ: Essential regulation of CNS angiogenesis by the orphan G protein-coupled receptor GPR124. Science. 2010, 330: 985-989. 10.1126/science.1196554.
Dejana E, Nyqvist D: News from the brain: the GPR124 orphan receptor directs brain-specific angiogenesis. Sci Transl Med. 2010, 2: 58ps53-10.1126/scitranslmed.3001793.
Kniesel U, Risau W, Wolburg H: Development of blood–brain barrier tight junctions in the rat cortex. Brain Res Dev Brain Res. 1996, 96: 229-240. 10.1016/0165-3806(96)00117-4.
Liebner S, Czupalla CJ, Wolburg H: Current concepts of blood–brain barrier development. Int J Dev Biol. 2011, 55: 467-476. 10.1387/ijdb.103224sl.
Butt AM, Jones HC, Abbott NJ: Electrical resistance across the blood–brain barrier in anaesthetized rats: a developmental study. J Physiol. 1990, 429: 47-62.
Preston JE, al-Sarraf H, Segal MB: Permeability of the developing blood–brain barrier to 14C-mannitol using the rat in situ brain perfusion technique. Brain Res Dev Brain Res. 1995, 87: 69-76. 10.1016/0165-3806(95)00060-Q.
Keep RF, Ennis SR, Beer ME, Betz AL: Developmental changes in blood–brain barrier potassium permeability in the rat: relation to brain growth. J Physiol. 1995, 488 (Pt 2): 439-448.
Thorne RG, Nicholson C: In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space. Proc Natl Acad Sci U S A. 2006, 103: 5567-5572. 10.1073/pnas.0509425103.
Crone C, Olesen SP: Electrical resistance of brain microvascular endothelium. Brain Res. 1982, 241: 49-55. 10.1016/0006-8993(82)91227-6.
Smith QR, Rapoport SI: Cerebrovascular permeability coefficients to sodium, potassium, and chloride. J Neurochem. 1986, 46: 1732-1742.
Neuwelt EA, Bauer B, Fahlke C, Fricker G, Iadecola C, Janigro D, Leybaert L, Molnar Z, O’Donnell ME, Povlishock JT: Engaging neuroscience to advance translational research in brain barrier biology. Nat Rev Neurosci. 2011, 12: 169-182. 10.1038/nrn2995.
Pizurki L, Zhou Z, Glynos K, Roussos C, Papapetropoulos A: Angiopoietin-1 inhibits endothelial permeability, neutrophil adherence and IL-8 production. Br J Pharmacol. 2003, 139: 329-336. 10.1038/sj.bjp.0705259.
Rist RJ, Romero IA, Chan MW, Couraud PO, Roux F, Abbott NJ: F-actin cytoskeleton and sucrose permeability of immortalised rat brain microvascular endothelial cell monolayers: effects of cyclic AMP and astrocytic factors. Brain Res. 1997, 768: 10-18. 10.1016/S0006-8993(97)00586-6.
el Hafny B, Bourre JM, Roux F: Synergistic stimulation of gamma-glutamyl transpeptidase and alkaline phosphatase activities by retinoic acid and astroglial factors in immortalized rat brain microvessel endothelial cells. J Cell Physiol. 1996, 167: 451-460. 10.1002/(SICI)1097-4652(199606)167:3<451::AID-JCP9>3.0.CO;2-O.
Igarashi Y, Utsumi H, Chiba H, Yamada-Sasamori Y, Tobioka H, Kamimura Y, Furuuchi K, Kokai Y, Nakagawa T, Mori M, Sawada N: Glial cell line-derived neurotrophic factor induces barrier function of endothelial cells forming the blood–brain barrier. Biochem Biophys Res Commun. 1999, 261: 108-112. 10.1006/bbrc.1999.0992.
Kim H, Lee JM, Park JS, Jo SA, Kim YO, Kim CW, Jo I: Dexamethasone coordinately regulates angiopoietin-1 and VEGF: a mechanism of glucocorticoid-induced stabilization of blood–brain barrier. Biochem Biophys Res Commun. 2008, 372: 243-248. 10.1016/j.bbrc.2008.05.025.
Calabria AR, Weidenfeller C, Jones AR, de Vries HE, Shusta EV: Puromycin-purified rat brain microvascular endothelial cell cultures exhibit improved barrier properties in response to glucocorticoid induction. J Neurochem. 2006, 97: 922-933. 10.1111/j.1471-4159.2006.03793.x.
Lee SW, Kim WJ, Choi YK, Song HS, Son MJ, Gelman IH, Kim YJ, Kim KW: SSeCKS regulates angiogenesis and tight junction formation in blood–brain barrier. Nat Med. 2003, 9: 900-906. 10.1038/nm889.
Garcia CM, Darland DC, Massingham LJ, D’Amore PA: Endothelial cell-astrocyte interactions and TGF beta are required for induction of blood-neural barrier properties. Brain Res Dev Brain Res. 2004, 152: 25-38. 10.1016/j.devbrainres.2004.05.008.
Stewart PA, Wiley MJ: Developing nervous tissue induces formation of blood–brain barrier characteristics in invading endothelial cells: a study using quail–chick transplantation chimeras. Dev Biol. 1981, 84: 183-192. 10.1016/0012-1606(81)90382-1.
Mi H, Haeberle H, Barres BA: Induction of astrocyte differentiation by endothelial cells. J Neurosci. 2001, 21: 1538-1547.
Lyck R, Ruderisch N, Moll AG, Steiner O, Cohen CD, Engelhardt B, Makrides V, Verrey F: Culture-induced changes in blood–brain barrier transcriptome: implications for amino-acid transporters in vivo. J Cereb Blood Flow Metab. 2009, 29: 1491-1502. 10.1038/jcbfm.2009.72.
Roux F, Couraud PO: Rat brain endothelial cell lines for the study of blood–brain barrier permeability and transport functions. Cell Mol Neurobiol. 2005, 25: 41-58. 10.1007/s10571-004-1376-9.
Kniesel U, Wolburg H: Tight junctions of the blood–brain barrier. Cell Mol Neurobiol. 2000, 20: 57-76. 10.1023/A:1006995910836.
Weksler BB, Subileau EA, Perriere N, Charneau P, Holloway K, Leveque M, Tricoire-Leignel H, Nicotra A, Bourdoulous S, Turowski P: Blood–brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J. 2005, 19: 1872-1874.
Roux F, Durieu-Trautmann O, Chaverot N, Claire M, Mailly P, Bourre JM, Strosberg AD, Couraud PO: Regulation of gamma-glutamyl transpeptidase and alkaline phosphatase activities in immortalized rat brain microvessel endothelial cells. J Cell Physiol. 1994, 159: 101-113. 10.1002/jcp.1041590114.
Montesano R, Pepper MS, Mohle-Steinlein U, Risau W, Wagner EF, Orci L: Increased proteolytic activity is responsible for the aberrant morphogenetic behavior of endothelial cells expressing the middle T oncogene. Cell. 1990, 62: 435-445. 10.1016/0092-8674(90)90009-4.
Naik P, Cucullo L: In vitro blood–brain barrier models: current and perspective technologies. J Pharm Sci. 2012, 101: 1337-1354. 10.1002/jps.23022.
Ogunshola OO: In vitro modeling of the blood–brain barrier: simplicity versus complexity. Curr Pharm Des. 2011, 17: 2755-2761. 10.2174/138161211797440159.
Arthur FE, Shivers RR, Bowman PD: Astrocyte-mediated induction of tight junctions in brain capillary endothelium: an efficient in vitro model. Brain Res. 1987, 433: 155-159.
Dehouck MP, Meresse S, Delorme P, Fruchart JC, Cecchelli R: An easier, reproducible, and mass-production method to study the blood–brain barrier in vitro. J Neurochem. 1990, 54: 1798-1801. 10.1111/j.1471-4159.1990.tb01236.x.
Rubin LL, Hall DE, Porter S, Barbu K, Cannon C, Horner HC, Janatpour M, Liaw CW, Manning K, Morales J: A cell culture model of the blood–brain barrier. J Cell Biol. 1991, 115: 1725-1735. 10.1083/jcb.115.6.1725.
Tao-Cheng JH, Nagy Z, Brightman MW: Tight junctions of brain endothelium in vitro are enhanced by astroglia. J Neurosci. 1987, 7: 3293-3299.
Janzer RC, Raff MC: Astrocytes induce blood–brain barrier properties in endothelial cells. Nature. 1987, 325: 253-257. 10.1038/325253a0.
Dore-Duffy P: Isolation and characterization of cerebral microvascular pericytes. Methods Mol Med. 2003, 89: 375-382.
Schiera G, Sala S, Gallo A, Raffa MP, Pitarresi GL, Savettieri G, Di Liegro I: Permeability properties of a three-cell type in vitro model of blood–brain barrier. J Cell Mol Med. 2005, 9: 373-379. 10.1111/j.1582-4934.2005.tb00362.x.
Schiera G, Bono E, Raffa MP, Gallo A, Pitarresi GL, Di Liegro I, Savettieri G: Synergistic effects of neurons and astrocytes on the differentiation of brain capillary endothelial cells in culture. J Cell Mol Med. 2003, 7: 165-170. 10.1111/j.1582-4934.2003.tb00215.x.
Cestelli A, Catania C, D’Agostino S, Di Liegro I, Licata L, Schiera G, Pitarresi GL, Savettieri G, De Caro V, Giandalia G, Giannola LI: Functional feature of a novel model of blood brain barrier: studies on permeation of test compounds. J Control Release. 2001, 76: 139-147. 10.1016/S0168-3659(01)00431-X.
Savettieri G, Di Liegro I, Catania C, Licata L, Pitarresi GL, D’Agostino S, Schiera G, De Caro V, Giandalia G, Giannola LI, Cestelli A: Neurons and ECM regulate occludin localization in brain endothelial cells. Neuroreport. 2000, 11: 1081-1084. 10.1097/00001756-200004070-00035.
Dohgu S, Takata F, Yamauchi A, Nakagawa S, Egawa T, Naito M, Tsuruo T, Sawada Y, Niwa M, Kataoka Y: Brain pericytes contribute to the induction and up-regulation of blood–brain barrier functions through transforming growth factor-beta production. Brain Res. 2005, 1038: 208-215. 10.1016/j.brainres.2005.01.027.
Hori S, Ohtsuki S, Hosoya K, Nakashima E, Terasaki T: A pericyte-derived angiopoietin-1 multimeric complex induces occludin gene expression in brain capillary endothelial cells through Tie-2 activation in vitro. J Neurochem. 2004, 89: 503-513. 10.1111/j.1471-4159.2004.02343.x.
Al Ahmad A, Taboada CB, Gassmann M, Ogunshola OO: Astrocytes and pericytes differentially modulate blood–brain barrier characteristics during development and hypoxic insult. J Cereb Blood Flow Metab. 2011, 31: 693-705. 10.1038/jcbfm.2010.148.
Fenart L, Buee-Scherrer V, Descamps L, Duhem C, Poullain MG, Cecchelli R, Dehouck MP: Inhibition of P-glycoprotein: rapid assessment of its implication in blood–brain barrier integrity and drug transport to the brain by an in vitro model of the blood–brain barrier. Pharm Res. 1998, 15: 993-1000. 10.1023/A:1011913723928.
Nakagawa S, Deli MA, Kawaguchi H, Shimizudani T, Shimono T, Kittel A, Tanaka K, Niwa M: A new blood–brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochem Int. 2009, 54: 253-263. 10.1016/j.neuint.2008.12.002.
Al Ahmad A, Gassmann M, Ogunshola OO: Maintaining blood–brain barrier integrity: pericytes perform better than astrocytes during prolonged oxygen deprivation. J Cell Physiol. 2009, 218: 612-622. 10.1002/jcp.21638.
Al Ahmad A, Taboada CB, Gassmann M, Ogunshola OO: Astrocytes and pericytes differentially modulate blood–brain barrier characteristics during development and hypoxic insult. J Cereb Blood Flow Metab. 2011, 31: 693-705. 10.1038/jcbfm.2010.148.
Cucullo L, Hossain M, Rapp E, Manders T, Marchi N, Janigro D: Development of a humanized in vitro blood–brain barrier model to screen for brain penetration of antiepileptic drugs. Epilepsia. 2007, 48: 505-516. 10.1111/j.1528-1167.2006.00960.x.
Cucullo L, Hossain M, Puvenna V, Marchi N, Janigro D: The role of shear stress in Blood–brain Barrier endothelial physiology. BMC Neurosci. 2011, 12: 40-10.1186/1471-2202-12-40.
Li Q, Ford MC, Lavik EB, Madri JA: Modeling the neurovascular niche: VEGF- and BDNF-mediated cross-talk between neural stem cells and endothelial cells: an in vitro study. J Neurosci Res. 2006, 84: 1656-1668. 10.1002/jnr.21087.
Lippmann ES, Weidenfeller C, Svendsen CN, Shusta EV: Blood–brain barrier modeling with co-cultured neural progenitor cell-derived astrocytes and neurons. J Neurochem. 2011, 119: 507-520. 10.1111/j.1471-4159.2011.07434.x.
Roy NS, Wang S, Jiang L, Kang J, Benraiss A, Harrison-Restelli C, Fraser RA, Couldwell WT, Kawaguchi A, Okano H: In vitro neurogenesis by progenitor cells isolated from the adult human hippocampus. Nat Med. 2000, 6: 271-277. 10.1038/73119.
Luskin MB: Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron. 1993, 11: 173-189. 10.1016/0896-6273(93)90281-U.
Lois C, Alvarez-Buylla A: Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc Natl Acad Sci U S A. 1993, 90: 2074-2077. 10.1073/pnas.90.5.2074.
Osawa M, Hanada K, Hamada H, Nakauchi H: Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science. 1996, 273: 242-245. 10.1126/science.273.5272.242.
Evans MJ, Kaufman MH: Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981, 292: 154-156. 10.1038/292154a0.
Martin GR: Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A. 1981, 78: 7634-7638. 10.1073/pnas.78.12.7634.
Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM: Embryonic stem cell lines derived from human blastocysts. Science. 1998, 282: 1145-1147.
Caldwell MA, He X, Wilkie N, Pollack S, Marshall G, Wafford KA, Svendsen CN: Growth factors regulate the survival and fate of cells derived from human neurospheres. Nat Biotechnol. 2001, 19: 475-479. 10.1038/88158.
Temple S: Division and differentiation of isolated CNS blast cells in microculture. Nature. 1989, 340: 471-473. 10.1038/340471a0.
Takahashi K, Yamanaka S: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006, 126: 663-676. 10.1016/j.cell.2006.07.024.
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007, 131: 861-872. 10.1016/j.cell.2007.11.019.
Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R: Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007, 318: 1917-1920. 10.1126/science.1151526.
Ring KL, Tong LM, Balestra ME, Javier R, Andrews-Zwilling Y, Li G, Walker D, Zhang WR, Kreitzer AC, Huang Y: Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor. Cell Stem Cell. 2012, 11: 100-109. 10.1016/j.stem.2012.05.018.
Han DW, Tapia N, Hermann A, Hemmer K, Hoing S, Arauzo-Bravo MJ, Zaehres H, Wu G, Frank S, Moritz S: Direct reprogramming of fibroblasts into neural stem cells by defined factors. Cell Stem Cell. 2012, 10: 465-472. 10.1016/j.stem.2012.02.021.
Kim J, Efe JA, Zhu S, Talantova M, Yuan X, Wang S, Lipton SA, Zhang K, Ding S: Direct reprogramming of mouse fibroblasts to neural progenitors. Proc Natl Acad Sci U S A. 2011, 108: 7838-7843. 10.1073/pnas.1103113108.
Hazeltine LB, Simmons CS, Salick MR, Lian X, Badur MG, Han W, Delgado SM, Wakatsuki T, Crone WC, Pruitt BL, Palecek SP: Effects of substrate mechanics on contractility of cardiomyocytes generated from human pluripotent stem cells. Int J Cell Biol. 2012, 2012: 508294-
Borowiak M: The new generation of beta-cells: replication, stem cell differentiation, and the role of small molecules. Rev Diabet Stud. 2010, 7: 93-104. 10.1900/RDS.2010.7.93.
Nizzardo M, Simone C, Falcone M, Locatelli F, Riboldi G, Comi GP, Corti S: Human motor neuron generation from embryonic stem cells and induced pluripotent stem cells. Cell Mol Life Sci. 2010, 67: 3837-3847. 10.1007/s00018-010-0463-y.
Meyer JS, Shearer RL, Capowski EE, Wright LS, Wallace KA, McMillan EL, Zhang SC, Gamm DM: Modeling early retinal development with human embryonic and induced pluripotent stem cells. Proc Natl Acad Sci U S A. 2009, 106: 16698-16703. 10.1073/pnas.0905245106.
Nakano T, Ando S, Takata N, Kawada M, Muguruma K, Sekiguchi K, Saito K, Yonemura S, Eiraku M, Sasai Y: Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell. 2012, 10: 771-785. 10.1016/j.stem.2012.05.009.
Metallo CM, Mohr JC, Detzel CJ, de Pablo JJ, Van Wie BJ, Palecek SP: Engineering the stem cell microenvironment. Biotechnol Prog. 2007, 23: 18-23. 10.1021/bp060350a.
Grskovic M, Javaherian A, Strulovici B, Daley GQ: Induced pluripotent stem cells–opportunities for disease modelling and drug discovery. Nat Rev Drug Discov. 2011, 10: 915-929.
Ebert AD, Yu J, Rose FF, Mattis VB, Lorson CL, Thomson JA, Svendsen CN: Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature. 2009, 457: 277-280. 10.1038/nature07677.
Israel MA, Yuan SH, Bardy C, Reyna SM, Mu Y, Herrera C, Hefferan MP, Van Gorp S, Nazor KL, Boscolo FS: Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature. 2012, 482: 216-220.
Lee G, Papapetrou EP, Kim H, Chambers SM, Tomishima MJ, Fasano CA, Ganat YM, Menon J, Shimizu F, Viale A: Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature. 2009, 461: 402-406. 10.1038/nature08320.
Marchetto MC, Carromeu C, Acab A, Yu D, Yeo GW, Mu Y, Chen G, Gage FH, Muotri AR: A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell. 2010, 143: 527-539. 10.1016/j.cell.2010.10.016.
Kola I, Landis J: Can the pharmaceutical industry reduce attrition rates?. Nat Rev Drug Discov. 2004, 3: 711-715. 10.1038/nrd1470.
Guo L, Abrams RM, Babiarz JE, Cohen JD, Kameoka S, Sanders MJ, Chiao E, Kolaja KL: Estimating the risk of drug-induced proarrhythmia using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Sci. 2011, 123: 281-289. 10.1093/toxsci/kfr158.
Cohen JD, Babiarz JE, Abrams RM, Guo L, Kameoka S, Chiao E, Taunton J, Kolaja KL: Use of human stem cell derived cardiomyocytes to examine sunitinib mediated cardiotoxicity and electrophysiological alterations. Toxicol Appl Pharmacol. 2011, 257: 74-83. 10.1016/j.taap.2011.08.020.
Lippmann ES, Azarin SM, Kay JE, Nessler RA, Wilson HK, Al-Ahmad A, Palecek SP, Shusta EV: Derivation of blood–brain barrier endothelial cells from human pluripotent stem cells. Nat Biotechnol. 2012, 30: 783-791. 10.1038/nbt.2247.
Shen Q, Goderie SK, Jin L, Karanth N, Sun Y, Abramova N, Vincent P, Pumiglia K, Temple S: Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science. 2004, 304: 1338-1340. 10.1126/science.1095505.
Lim JC, Wolpaw AJ, Caldwell MA, Hladky SB, Barrand MA: Neural precursor cell influences on blood–brain barrier characteristics in rat brain endothelial cells. Brain Res. 2007, 1159: 67-76.
Levenberg S, Golub JS, Amit M, Itskovitz-Eldor J, Langer R: Endothelial cells derived from human embryonic stem cells. Proc Natl Acad Sci U S A. 2002, 99: 4391-4396. 10.1073/pnas.032074999.
James D, Nam HS, Seandel M, Nolan D, Janovitz T, Tomishima M, Studer L, Lee G, Lyden D, Benezra R: Expansion and maintenance of human embryonic stem cell-derived endothelial cells by TGFbeta inhibition is Id1 dependent. Nat Biotechnol. 2010, 28: 161-166. 10.1038/nbt.1605.
Choi KD, Yu J, Smuga-Otto K, Salvagiotto G, Rehrauer W, Vodyanik M, Thomson J, Slukvin I: Hematopoietic and endothelial differentiation of human induced pluripotent stem cells. Stem Cells. 2009, 27: 559-567.
Merkle FT, Mirzadeh Z, Alvarez-Buylla A: Mosaic organization of neural stem cells in the adult brain. Science. 2007, 317: 381-384. 10.1126/science.1144914.
Hochstim C, Deneen B, Lukaszewicz A, Zhou Q, Anderson DJ: Identification of positionally distinct astrocyte subtypes whose identities are specified by a homeodomain code. Cell. 2008, 133: 510-522. 10.1016/j.cell.2008.02.046.
Tsai HH, Li H, Fuentealba LC, Molofsky AV, Taveira-Marques R, Zhuang H, Tenney A, Murnen AT, Fancy SP, Merkle F: Regional astrocyte allocation regulates CNS synaptogenesis and repair. Science. 2012, 337: 358-362. 10.1126/science.1222381.
Vasudevan A, Long JE, Crandall JE, Rubenstein JL, Bhide PG: Compartment-specific transcription factors orchestrate angiogenesis gradients in the embryonic brain. Nat Neurosci. 2008, 11: 429-439. 10.1038/nn2074.
Saubamea B, Cochois-Guegan V, Cisternino S, Scherrmann JM: Heterogeneity in the rat brain vasculature revealed by quantitative confocal analysis of endothelial barrier antigen and P-glycoprotein expression. J Cereb Blood Flow Metab. 2012, 32: 81-92. 10.1038/jcbfm.2011.109.
Sergent-Tanguy S, Michel DC, Neveu I, Naveilhan P: Long-lasting coexpression of nestin and glial fibrillary acidic protein in primary cultures of astroglial cells with a major participation of nestin(+)/GFAP(−) cells in cell proliferation. J Neurosci Res. 2006, 83: 1515-1524. 10.1002/jnr.20846.
Yang H, Qian XH, Cong R, Li JW, Yao Q, Jiao XY, Ju G, You SW: Evidence for heterogeneity of astrocyte de-differentiation in vitro: astrocytes transform into intermediate precursor cells following induction of ACM from scratch-insulted astrocytes. Cell Mol Neurobiol. 2010, 30: 483-491. 10.1007/s10571-009-9474-3.
Thanabalasundaram G, Schneidewind J, Pieper C, Galla HJ: The impact of pericytes on the blood–brain barrier integrity depends critically on the pericyte differentiation stage. Int J Biochem Cell Biol. 2011, 43: 1284-1293. 10.1016/j.biocel.2011.05.002.
Wright LS, Li J, Caldwell MA, Wallace K, Johnson JA, Svendsen CN: Gene expression in human neural stem cells: effects of leukemia inhibitory factor. J Neurochem. 2003, 86: 179-195.
Armulik A, Genove G, Mae M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K: Pericytes regulate the blood–brain barrier. Nature. 2010, 468: 557-561. 10.1038/nature09522.
Calabria AR, Shusta EV: A genomic comparison of in vivo and in vitro brain microvascular endothelial cells. J Cereb Blood Flow Metab. 2008, 28: 135-148. 10.1038/sj.jcbfm.9600518.
Carl SM, Lindley DJ, Couraud PO, Weksler BB, Romero I, Mowery SA, Knipp GT: ABC and SLC transporter expression and pot substrate characterization across the human CMEC/D3 blood–brain barrier cell line. Mol Pharm. 2010, 7: 1057-1068. 10.1021/mp900178j.
Dauchy S, Miller F, Couraud PO, Weaver RJ, Weksler B, Romero IA, Scherrmann JM, De Waziers I, Decleves X: Expression and transcriptional regulation of ABC transporters and cytochromes P450 in hCMEC/D3 human cerebral microvascular endothelial cells. Biochem Pharmacol. 2009, 77: 897-909. 10.1016/j.bcp.2008.11.001.
Poller B, Gutmann H, Krahenbuhl S, Weksler B, Romero I, Couraud PO, Tuffin G, Drewe J, Huwyler J: The human brain endothelial cell line hCMEC/D3 as a human blood–brain barrier model for drug transport studies. J Neurochem. 2008, 107: 1358-1368. 10.1111/j.1471-4159.2008.05730.x.
Krencik R, Zhang SC: Directed differentiation of functional astroglial subtypes from human pluripotent stem cells. Nat Protoc. 2011, 6: 1710-1717. 10.1038/nprot.2011.405.
Krencik R, Weick JP, Liu Y, Zhang ZJ, Zhang SC: Specification of transplantable astroglial subtypes from human pluripotent stem cells. Nat Biotechnol. 2011, 29: 528-534. 10.1038/nbt.1877.
Tavazoie M, Van der Veken L, Silva-Vargas V, Louissaint M, Colonna L, Zaidi B, Garcia-Verdugo JM, Doetsch F: A specialized vascular niche for adult neural stem cells. Cell Stem Cell. 2008, 3: 279-288. 10.1016/j.stem.2008.07.025.
Zhang SC, Wernig M, Duncan ID, Brustle O, Thomson JA: In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol. 2001, 19: 1129-1133. 10.1038/nbt1201-1129.
Dar A, Domev H, Ben-Yosef O, Tzukerman M, Zeevi-Levin N, Novak A, Germanguz I, Amit M, Itskovitz-Eldor J: Multipotent vasculogenic pericytes from human pluripotent stem cells promote recovery of murine ischemic limb. Circulation. 2012, 125: 87-99. 10.1161/CIRCULATIONAHA.111.048264.
Lian Q, Zhang Y, Zhang J, Zhang HK, Wu X, Lam FF, Kang S, Xia JC, Lai WH, Au KW: Functional mesenchymal stem cells derived from human induced pluripotent stem cells attenuate limb ischemia in mice. Circulation. 2010, 121: 1113-1123. 10.1161/CIRCULATIONAHA.109.898312.
Bell RD, Winkler EA, Singh I, Sagare AP, Deane R, Wu Z, Holtzman DM, Betsholtz C, Armulik A, Sallstrom J: Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature. 2012, 485: 512-516.
Culot M, Lundquist S, Vanuxeem D, Nion S, Landry C, Delplace Y, Dehouck MP, Berezowski V, Fenart L, Cecchelli R: An in vitro blood–brain barrier model for high throughput (HTS) toxicological screening. Toxicol In Vitro. 2008, 22: 799-811. 10.1016/j.tiv.2007.12.016.
Patabendige A, Skinner RA, Abbott NJ: Establishment of a simplified in vitro porcine blood–brain barrier model with high transendothelial electrical resistance. Brain Res. in press
Cecchelli R, Dehouck B, Descamps L, Fenart L, Buee-Scherrer VV, Duhem C, Lundquist S, Rentfel M, Torpier G, Dehouck MP: In vitro model for evaluating drug transport across the blood–brain barrier. Adv Drug Deliv Rev. 1999, 36: 165-178. 10.1016/S0169-409X(98)00083-0.
Tai LM, Reddy PS, Lopez-Ramirez MA, Davies HA, Male DK, Loughlin AJ, Romero IA: Polarized P-glycoprotein expression by the immortalised human brain endothelial cell line, hCMEC/D3, restricts apical-to-basolateral permeability to rhodamine 123. Brain Res. 2009, 1292: 14-24.
Wang Q, Yang H, Miller DW, Elmquist WF: Effect of the p-glycoprotein inhibitor, cyclosporin A, on the distribution of rhodamine-123 to the brain: an in vivo microdialysis study in freely moving rats. Biochem Biophys Res Commun. 1995, 211: 719-726. 10.1006/bbrc.1995.1872.
Roberts LM, Woodford K, Zhou M, Black DS, Haggerty JE, Tate EH, Grindstaff KK, Mengesha W, Raman C, Zerangue N: Expression of the thyroid hormone transporters monocarboxylate transporter-8 (SLC16A2) and organic ion transporter-14 (SLCO1C1) at the blood–brain barrier. Endocrinology. 2008, 149: 6251-6261. 10.1210/en.2008-0378.
Uchida Y, Ohtsuki S, Katsukura Y, Ikeda C, Suzuki T, Kamiie J, Terasaki T: Quantitative targeted absolute proteomics of human blood–brain barrier transporters and receptors. J Neurochem. 2011, 117: 333-345. 10.1111/j.1471-4159.2011.07208.x.
Osafune K, Caron L, Borowiak M, Martinez RJ, Fitz-Gerald CS, Sato Y, Cowan CA, Chien KR, Melton DA: Marked differences in differentiation propensity among human embryonic stem cell lines. Nat Biotechnol. 2008, 26: 313-315. 10.1038/nbt1383.
Hu BY, Weick JP, Yu J, Ma LX, Zhang XQ, Thomson JA, Zhang SC: Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc Natl Acad Sci U S A. 2010, 107: 4335-4340. 10.1073/pnas.0910012107.
Polo JM, Liu S, Figueroa ME, Kulalert W, Eminli S, Tan KY, Apostolou E, Stadtfeld M, Li Y, Shioda T: Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat Biotechnol. 2010, 28: 848-855. 10.1038/nbt.1667.
Bar-Nur O, Russ HA, Efrat S, Benvenisty N: Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet beta cells. Cell Stem Cell. 2011, 9: 17-23. 10.1016/j.stem.2011.06.007.
Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P, Kim J, Aryee MJ, Ji H, Ehrlich LI: Epigenetic memory in induced pluripotent stem cells. Nature. 2010, 467: 285-290. 10.1038/nature09342.
Shao K, Koch C, Gupta MK, Lin Q, Lenz M, Laufs S, Denecke B, Schmidt M, Linke M, Hennies HC: Induced pluripotent mesenchymal stromal cell clones retain donor-derived differences in DNA methylation profiles. Mol Ther. in press
Booth R, Kim H: Characterization of a microfluidic in vitro model of the blood–brain barrier (muBBB). Lab Chip. 2012, 12: 1784-1792. 10.1039/c2lc40094d.
Howden SE, Gore A, Li Z, Fung HL, Nisler BS, Nie J, Chen G, McIntosh BE, Gulbranson DR, Diol NR: Genetic correction and analysis of induced pluripotent stem cells from a patient with gyrate atrophy. Proc Natl Acad Sci U S A. 2011, 108: 6537-6542. 10.1073/pnas.1103388108.
Hockemeyer D, Soldner F, Beard C, Gao Q, Mitalipova M, DeKelver RC, Katibah GE, Amora R, Boydston EA, Zeitler B: Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol. 2009, 27: 851-857. 10.1038/nbt.1562.
Hockemeyer D, Wang H, Kiani S, Lai CS, Gao Q, Cassady JP, Cost GJ, Zhang L, Santiago Y, Miller JC: Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol. 2011, 29: 731-734. 10.1038/nbt.1927.