The need for mathematical modelling of spatial drug distribution within the brain
Tóm tắt
Từ khóa
Tài liệu tham khảo
Hammarlund-Udenaes M, Paalzow LK, de Lange ECM. Drug equilibration across the blood–brain barrier-pharmacokinetic considerations based on the microdialysis method. Pharm Res. 1997;14(2):128–34.
Abbott JN, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ. Structure and function of the blood–brain barrier. Neurobiol Dis. 2010;37(1):13–25.
Zlokovic BV. Neurovascular mechanisms of Alzheimer’s neurodegeneration. Trends Neurosci. 2005;28(4):202–8. https://doi.org/10.1016/j.tins.2005.02.001 .
Jucker M, Bättig K, Meier-Ruge W. Effects of aging and vincamine derivatives on pericapillary microenvironment: stereological characterization of the cerebral capillary network. Neurobiol Aging. 1990;11(1):39–46. https://doi.org/10.1016/0197-4580(90)90060-d .
Schlageter KE, Molnar P, Lapin GD, Groothuis DR. Microvessel organization and structure in experimental brain tumors: microvessel populations with distinctive structural and functional properties. Microvasc Res. 1999;58(3):312–28. https://doi.org/10.1006/mvre.1999.2188 .
Pardridge WM. The blood–brain barrier: bottleneck in brain drug development. NeuroRx. 2005;2(1):3–14. https://doi.org/10.1602/neurorx.2.1.3 .
Tata DA, Anderson B. A new method for the investigation of capillary structure. J Neurosci Methods. 2002;113(2):199–206. https://doi.org/10.1016/s0165-0270(01)00494-0 .
Hawkins BT, Davis TP. The blood–brain barrier/neurovascular unit in health and disease. Pharmacol Rev. 2005;57(2):173–85. https://doi.org/10.1124/pr.57.2.4 .
Abbott NJ, Rönnbäck L, Hansson E. Astrocyte–endothelial interactions at the blood–brain barrier. Nat Rev Neurosci. 2006;7(1):41. https://doi.org/10.1016/j.neuint.2003.11.006 .
Fenstermacher J, Kaye T. Drug “difuusion” within the brain. Ann N Y Acad Sci. 1988;531(1):29–39. https://doi.org/10.1111/j.1749-6632.1988.tb31809.x .
Kniesel U, Wolburg H. Tight junctions of the blood–brain barrier. Cell Mol Neurobiol. 2000;20(1):57–76.
Schachenmayr W, Friede R. The origin of subdural neomembranes. I. Fine structure of the dura-arachnoid interface in man. Am J Pathol. 1978;92(1):53.
Vandenabeele F, Creemers J, Lambrichts I. Ultrastructure of the human spinal arachnoid mater and dura mater. J Anat. 1996;189(Pt 2):417.
Yasuda K, Cline CB, Vogel P, Onciu M, Fatima S, Sorrentino BP, Thirumaran RK, Ekins S, Urade Y, Fujimori K, et al. Drug transporters on arachnoid barrier cells contribute to the blood–cerebrospinal fluid barrier. Drug Metab Dispos. 2013;. https://doi.org/10.1124/dmd.112.050344 .
Schmitt FO, Samson FE. Brain cell microenvironment. Neurosci Res Prog Bull. 1969;7:277–417.
Nicholson C, Syková E. Extracellular space structure revealed by diffusion analysis. Trends Neurosci. 1998;21(5):207–15. https://doi.org/10.1016/s0166-2236(98)01261-2 .
Wong A, Ye M, Levy A, Rothstein J, Bergles D, Searson PC. The blood–brain barrier: an engineering perspective. Front Neuroeng. 2013;6:7. https://doi.org/10.3389/fneng.2013.00007 .
Zonta M, Angulo MC, Gobbo S, Rosengarten B, Hossmann K-A, Pozzan T, Carmignoto G. Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci. 2003;6(1):43. https://doi.org/10.1038/nn980 .
Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci. 2004;5(5):347. https://doi.org/10.1038/nrn1387 .
Takano T, Tian G-F, Peng W, Lou N, Libionka W, Han X, Nedergaard M. Astrocyte-mediated control of cerebral blood flow. Nat Neurosci. 2006;9(2):260. https://doi.org/10.1038/nn1623 .
Iadecola C, Nedergaard M. Glial regulation of the cerebral microvasculature. Nat Neurosci. 2007;10(11):1369. https://doi.org/10.1038/nn2003 .
Hladky SB, Barrand MA. Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence. Fluids Barriers CNS. 2014;11(1):1. https://doi.org/10.1186/2045-8118-11-26 .
Brinker T, Stopa E, Morrison J, Klinge P. A new look at cerebrospinal fluid circulation. Fluids Barriers CNS. 2014;11(1):10. https://doi.org/10.1016/b978-141602908-3.50015-7 .
Orešković D, Klarica M. A new look at cerebrospinal fluid movement. Fluids Barriers CNS. 2014;11(1):16. https://doi.org/10.1186/2045-8118-11-16 .
Marchi N, Banjara M, Janigro D. Blood–brain barrier, bulk flow, and interstitial clearance in epilepsy. J Neurosci Methods. 2016;260:118–24. https://doi.org/10.1016/j.jneumeth.2015.06.011 .
Cserr HF, Bundgaard M. Blood–brain interfaces in vertebrates: a comparative approach. Am J Physiol-Regul Integr Comp Physiol. 1984;246(3):277–88. https://doi.org/10.1152/ajpregu.1984.246.3.r277 .
Abbott JN. Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem Int. 2004;45(4):545–52. https://doi.org/10.1016/j.neuint.2003.11.006 .
Davson H, Segal MB. Physiology of the CSF and blood–brain barriers. Boca Raton: CRC Press; 1995.
Iliff JJ, Wang M, Zeppenfeld DM, Venkataraman A, Plog BA, Liao Y, Deane R, Nedergaard M. Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain. J Neurosci. 2013;33(46):18190–9. https://doi.org/10.1523/jneurosci.1592-13.2013 .
Lei Y, Han H, Yuan F, Javeed A, Zhao Y. The brain interstitial system: anatomy, modeling, in vivo measurement, and applications. Prog Neurobiol. 2017;. https://doi.org/10.1016/j.pneurobio.2015.12.007 .
Johanson CE, Duncan JA, Klinge PM, Brinker T, Stopa EG, Silverberg GD. Multiplicity of cerebrospinal fluid functions: new challenges in health and disease. Cerebrospinal Fluid Res. 2008;5(1):10. https://doi.org/10.1186/1743-8454-5-10 .
Bulat M, Klarica M. Recent insights into a new hydrodynamics of the cerebrospinal fluid. Brain Res Rev. 2011;65(2):99–112. https://doi.org/10.1016/j.brainresrev.2010.08.002 .
Jin B-J, Smith AJ, Verkman AS. Spatial model of convective solute transport in brain extracellular space does not support a “glymphatic” mechanism. J Gen Physiol. 2016;148(6):489–501. https://doi.org/10.1085/jgp.201611684 .
Abbott NJ, Pizzo ME, Preston JE, Janigro D, Thorne RG. The role of brain barriers in fluid movement in the CNS: is there a ‘glymphatic’ system? Acta Neuropathol. 2018;. https://doi.org/10.1007/s00401-018-1812-4 .
Nedergaard M. Garbage truck of the brain. Science. 2013;340(6140):1529–30. https://doi.org/10.1126/science.1240514 .
Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, O’Donnell J, Christensen DJ, Nicholson C, Iliff JJ, et al. Sleep drives metabolite clearance from the adult brain. Science. 2013;342(6156):373–7. https://doi.org/10.1126/science.1241224 .
Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA, et al. A paravascular pathway facilitates csf flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid $$\beta$$. Sci Transl Med. 2012;4(147):147–111147111. https://doi.org/10.1126/scitranslmed.3003748 .
Holter KE, Kehlet B, Devor A, Sejnowski TJ, Dale AM, Omholt SW, Ottersen OP, Nagelhus EA, Mardal K-A, Pettersen KH. Interstitial solute transport in 3D reconstructed neuropil occurs by diffusion rather than bulk flow. Proc Natl Acad Sci. 2017;114(37):9894–9. https://doi.org/10.1073/pnas.1706942114 .
Smith AJ, Yao X, Dix JA, Jin B-J, Verkman AS. Test of the ǵlymphatich́ypothesis demonstrates diffusive and aquaporin-4-independent solute transport in rodent brain parenchyma. Elife. 2017;6:27679. https://doi.org/10.7554/elife.27679 .
McComb JG. Recent research into the nature of cerebrospinal fluid formationand absorption. J Neurosurg. 1983;59(3):369–83. https://doi.org/10.3171/jns.1983.59.3.0369 .
Begley D, Bradbury M. The role of brain extracellular fluid production and efflux mechanisms in drug transport to the brain. In: Kreuter J, editor. The blood–brain barrier and drug delivery to the CNS. New York: Marcel Dekker; 2000. https://doi.org/10.1201/9780824741990.ch6 .
Iliff JJ, Goldman SA, Nedergaard M. Implications of the discovery of brain lymphatic pathways. Lancet Neurol. 2015;14(10):977–9. https://doi.org/10.1016/s1474-4422(15)00221-5 .
Simon MJ, Iliff JJ. Regulation of cerebrospinal fluid (CSF) flow in neurodegenerative, neurovascular and neuroinflammatory disease. Biochim Biophys Acta. 2016;1862(3):422–51. https://doi.org/10.1016/j.bbadis.2015.10.014 .
Guengerich FP. Cytochrome p450 and chemical toxicology. Chem Res Intoxicol. 2007;21(1):70–83. https://doi.org/10.1021/tx700079z .
de Lange ECM. The mastermind approach to CNS drug therapy: translational prediction of human brain distribution, target site kinetics, and therapeutic effects. Fluids Barriers CNS. 2013;10(1):12. https://doi.org/10.1186/2045-8118-10-12 .
Ferguson CS, Tyndale RF. Cytochrome p450 enzymes in the brain: emerging evidence of biological significance. Trends Pharmacol Sci. 2011;32(12):708–14. https://doi.org/10.1016/j.tips.2011.08.005 .
Seelig A. The role of size and charge for blood–brain barrier permeation of drugs and fatty acids. J Chem Inf Model. 2007;33:32–41. https://doi.org/10.1007/s12031-007-0055-y .
Banks WA. Characteristics of compounds that cross the blood–brain barrier. BMC Neurol. 2009;9(1):3. https://doi.org/10.1186/1471-2377-9-s1-s3 .
Kortagere S, Krasowski MD, Ekins S. The importance of discerning shape in molecular pharmacology. Trends Pharmacol Sci. 2009;30(3):138–47. https://doi.org/10.1016/j.tips.2008.12.001 .
Hitchock SA, Pennington LD. Structure-brain exposure relationships. J Med Chem. 2006;49(26):7559–83. https://doi.org/10.1002/chin.200713268 .
Hammarlund-Udenaes M. Active-site concentrations of chemicals—are they a better predictor of effect than plasma/organ/tissue concentrations? Basic Clin Pharmacol Toxicol. 2010;106(3):215–20. https://doi.org/10.1111/j.1742-7843.2009.00517.x .
Kamiya A, Bukhari R, Togawa T. Adaptive regulation of wall shear stress optimizing vascular tree function. Bull Math Biol. 1984;46(1):127–37. https://doi.org/10.1016/s0092-8240(84)80038-5 .
Rowland M, Tozer TN. Clinical pharmacokinetics and pharmacodynamics. Philadelphia: Lippincott Williams and Wilkins; 2005.
Trapa PE, Belova E, Liras JL, Scott DO, Steyn SJ. Insights from an integrated physiologically based pharmacokinetic model for brain penetration. J Pharm Sci. 2016;105(2):965–71. https://doi.org/10.1016/j.xphs.2015.12.005 .
Korjamo T, Heikkinen AT, Mönkkönen J. Analysis of unstirred water layer in in vitro permeability experiments. J Pharm Sci. 2009;98(12):4469–79. https://doi.org/10.1002/jps.21762 .
Loftsson T. Drug permeation through biomembranes: cyclodextrins and the unstirred water layer. Die Pharmazie Int J Pharm Sci. 2012;67(5):363–70.
Balusu S, Van Wonterghem E, De Rycke R, Raemdonck K, Stremersch S, Gevaert K, Brkic M, Demeestere D, Vanhooren V, Hendrix A, Libert C, Vandenbroucke RE. Identification of a novel mechanism of blood–brain communication during peripheral inflammation via choroid plexus-derived extracellular vesicles. Mol Pharm. 2016;8(10):1162–83. https://doi.org/10.15252/emmm.201606271 .
Andreone BJ, Chow BW, Tata A, Lacoste A, Ben-Zvi B, Bullock K, Deik AA, Ginty DD, Clish CB, Gu C. Blood–brain barrier permeability is regulated by lipid transport-dependent suppression of caveolae-mediated transcytosis. Neuron. 2017;94(3):581–94. https://doi.org/10.1016/j.neuron.2017.03.043 .
Gonatas NK, Stieber A, Hickey WF, Herbert SH, Gonatas JO. Endosomes and Golgi vesicles in adsorptive and fluid phase endocytosis. J Cell biol. 1984;99(4):1379–90. https://doi.org/10.1083/jcb.99.4.1379 .
Hervé F, Ghinea N, Schermann J-M. CNS delivery via adsorptive transcytosis. AAPS J. 2008;10(3):455–72. https://doi.org/10.1208/s12248-008-9055-2 .
Pardridge WM. Receptor-mediated peptide transport through the blood–brain barrier. Endocr Rev. 1986;3(7):314–30. https://doi.org/10.1007/978-94-010-9595-2_177 .
Urquhart BL, Kim RB. Blood–brain barrier transporters and response to CNS-active drugs. Eur J Clin Pharmacol. 2009;65(11):1063. https://doi.org/10.1007/s00228-009-0714-8 .
Dalvi S, On N, Nguyen H, Pogorzelec M, Miller DW, Hatch GM. The blood brain barrier-regulation of fatty acid and drug transport. In: Heinbockel T, editor. Neurochemistry, Chap. 1. Rijeka: IntechOpen; 2014. https://doi.org/10.5772/57604 .
Pardridge WM. Drug transport across the blood–brain barrier. J Cereb Blood Flow Metab. 2012;32(11):1959–72. https://doi.org/10.1038/jcbfm.2012.126 .
Ghersi-Egea J-F, Leninger-Muller B, Suleman G, Siest G, Minn A. Localization of drug-metabolizing enzyme activities to blood–brain interfaces and circumventricular organs. J Neurochem. 1994;62:1089–96. https://doi.org/10.1046/j.1471-4159.1994.62031089.x .
Zawilska JB, Wojcieszak J, Olejniczak AB. Prodrugs: a challenge for the drug development. Pharmacol Rep. 2013;65(1):1–14. https://doi.org/10.1016/s1734-1140(13)70959-9 .
Pardridge WM. Drug transport in brain via the cerebrospinal fluid. Fluids Barriers CNS. 2011;8(1):7. https://doi.org/10.1186/2045-8118-8-7 .
Butler SL, Kohles SS, Thielke RJ, Chen C, Vanderby R. Interstitial fluid flow in tendons or ligaments: a porous medium finite element simulation. Med Biol Eng Comput. 1997;35(6):742–6. https://doi.org/10.1007/BF02510987 .
Syková E, Nicholson C. Diffusion in brain extracellular space. Physiol Rev. 2008;88(4):1277–340. https://doi.org/10.1152/physrev.00027.2007 .
Hrabětová S, Hrabe J, Nicholson C. Dextran decreases extracellular tortuosity in thickslice ischemia model. J Cereb Blood Flow Metab. 2000;20(9):1306–10. https://doi.org/10.1097/00004647-200009000-00005 .
Hrabětová S, Hrabe J, Nicholson C. Dead-space microdomains hinder extracellular diffusion in rat neocortex during ischemia. J Neurosci. 2003;23(23):8351–9. https://doi.org/10.1523/jneurosci.23-23-08351.2003 .
Nicholson C. Factors governing diffusing molecular signals in brain extracellular space. J Neural Transm. 2005;112(1):29–44. https://doi.org/10.1007/s00702-004-0204-1 .
Wolak DJ, Thorne RG. Diffusion of macromolecules in the brain: implications for drug delivery. Mol Pharm. 2013;10(5):1492–504. https://doi.org/10.1021/mp300495e .
Cserr HF, Ostrach LH. Bulk flow of interstitial fluid after intracranial injection of blue dextran 2000. Exp Neurol. 1974;45(1):50–60.
de Lange ECM, Danhof M. Considerations in the use of cerebrospinal fluid pharmacokinetics to predict brain target concentrations in the clinical setting. Clin Pharm. 2002;41(10):691–703. https://doi.org/10.2165/00003088-200241100-00001 .
Nicholson C, Tao L. Hindered diffusion of high molecular weight compounds in brain extracellular microenvironment measured with integrative optical imaging. Biophys J. 1993;65(6):2277–90. https://doi.org/10.1016/S0006-3495(93)81324-9 .
Saltzman W. Drug delivery: engineering principles for drug therapy. Oxford: Oxford University Press; 2001. p. 384. https://doi.org/10.1039/c4nr00915k . arXiv:1011.1669v3 .
Proescholdt MG, Hutto B, Brady LS, Herkenham M. Studies of cerebrospinal fluid flow and penetration into brain following lateral ventricle and cisterna magna injections of the tracer [14C] inulin in rat. Neuroscience. 2000;95(2):577–92. https://doi.org/10.1016/s0306-4522(99)00417-0 .
Kalvass JC, Maurer TS. Influence of non-specific brain and plasma binding on cns exposure: implications for rational drug discovery. Biopharm Drug Dispos. 2002;23(8):327–38. https://doi.org/10.1002/bdd.325 .
Lee G, Dallas S, Hong M, Bendayan R. Drug transporters in the central nervous system: brain barriers and brain parenchyma considerations. Pharmacol Rev. 2001;53(4):569–96.
Marroni M, Marchi N, Cuccolo L, Abbott N, Signorelli K, Janigro D. Vascular and parenchymal mechanisms in multiple drug resistance: a lesson from human epilepsy. Curr Drug Targets. 2003;4(4):297–304. https://doi.org/10.2174/1389450033491109 .
De Duve C, De Barsy T, Poole B, Tulkens P. Lysosomotropic agents. Biochem Pharmacol. 1974;23(18):2495–531.
Kazmi F, Hensley T, Pope C, Funk RS, Loewen GJ, Buckley DB. Lysosomal sequestration (trapping) of lipophilic amine (cationic amphiphilic) drugs in immortalized human hepatocytes (Fa2N-4 cells). Drug Metab Dispos. 2013;. https://doi.org/10.1124/dmd.112.050054 .
Alvàn G, Paintaud G, Wakelkamp M. The efficiency concept in pharmacodynamics. Clin Pharmacokinet. 1999;36(5):375–89. https://doi.org/10.2165/00003088-199936050-00005 .
Copeland RA, Pompliano DL, Meek TD. Drug-target residence time and its implications for lead optimization. Nat Rev Drug Discov. 2006;5(9):730. https://doi.org/10.1038/nrd2082 .
Swinney DC. Biochemical mechanisms of drug action: what does it take for success? Nat Rev Drug Discov. 2004;3(9):801. https://doi.org/10.1038/nrd1500 .
Pan AC, Borhani DW, Dror RO, Shaw DE. Molecular determinants of drug-receptor binding kinetics. Drug Discov Today. 2013;18(13–14):667–73. https://doi.org/10.1016/j.drudis.2013.02.007 .
de Witte WHeEA, Danhof M, van der Graaf PH, de Lange ECM. In vivo target residence time and kinetic selectivity: the association rate constant as determinant. Trends Pharmacol Sci. 2016;37(10):831–42. https://doi.org/10.1016/j.tips.2016.06.008 .
Minn A, Ghersi-Egea J-F, Perrin R, Leininger B, Siest G. Drug metabolizing enzymes in the brain and cerebral microvessels. Brain Res Rev. 1991;16(1):65–82. https://doi.org/10.1016/0165-0173(91)90020-9 .
Ghersi-Egea J-F, Perrin R, Leninger-Muller B, Grassiot M, Jeandel C, Floquet J, Cuny G, Siest G, Minn A. Subcellular localization of cytochrome p450, and activities of several enzymes responsible for drug metabolism in the human brain. Biochem Pharmacol. 1993;45(3):647–58.
Shawahna R, Uchida Y, Declèves X, Ohtsuki S, Yousif S, Dauchy S, Jacob A, Chassoux F, Daumas-Duport C, Couraud P-O, Terasaki T, Scherrmann JM. Transcriptomic and quantitative proteomic analysis of transporters and drug metabolizing enzymes in freshly isolated human brain microvessels. Mol Pharm. 2011;8(4):1332–41. https://doi.org/10.1021/mp200129p .
Khokhar JY, Tyndale RF. Drug metabolism within the brain changes drug response: selective manipulation of brain CYP2B alters propofol effects. Neuropsychopharmacology. 2011;36(3):692. https://doi.org/10.1038/npp.2010.202 .
McMillan DM, Tyndale RF. CYP-mediated drug metabolism in the brain impacts drug response. Pharmacol Ther. 2017;. https://doi.org/10.1016/j.pharmthera.2017.10.008 .
Klein B, Kuschinsky H, Schrock H, Vetterlein F. Interdependency of local capillary density, blood flow, and metabolism in rat brains. Am J Physiol Heart Circ Physiol. 1986;251(6):1333–40. https://doi.org/10.1152/ajpheart.1986.251.6.h1333 .
Borowsky IW, Collins RC. Metabolic anatomy of brain: a comparison of regional capillary density, glucose metabolism, and enzyme activities. J Comp Neurol. 1989;288(3):401–13. https://doi.org/10.1002/cne.902880304 .
Cipolla M. The cerebral circulation. Integr Syst Physiol From Mol Funct. 2009;1(1):1–59. https://doi.org/10.4199/c00005ed1v01y200912isp002 .
Chen BR, Kozberg MG, Bouchard MB, Shaik MA, Hillman EM. A critical role for the vascular endothelium in functional neurovascular coupling in the brain. J Am Heart Assoc. 2014;3(3):000787. https://doi.org/10.1161/jaha.114.000787 .
Longden TA, Dabertrand F, Koide M, Gonzalez AL, Tykocki NR, Brayden JE, Hill-Eubanks D, Nelson MT. Capillary K+-sensing initiates retrograde hyperpolarization to increase local cerebral blood flow. Nat Neurosci. 2017;20(5):717. https://doi.org/10.1038/nn.4533 .
Jang SH, Wientjes MG, Lu D, Au JL. Drug delivery and transport to solid tumors. Pharm Res. 2003;20(9):1337–50.
Shipley RJ, Chapman SJ. Multiscale modelling of fluid and drug transport in vascular tumours. Bull Math Biol. 2010;72(6):1464–91. https://doi.org/10.1007/s11538-010-9504-9 .
Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000;407:249–57. https://doi.org/10.1038/35025220 .
Boero JA, Ascher J, Arregui A, Rovainen C, Woolsey TA, Jaime A, Ascher J, Arregui A, Rovainen C, Woolsey TA. Increased brain capillaries in chronic hypoxia. J Appl Physiol. 1999;86(4):1211. https://doi.org/10.1152/jappl.1999.86.4.1211 .
Ito H, Kanno I, Ibaraki M, Hatazawa J, Miura S. Changes in human cerebral blood flow and cerebral blood volume during hypercapnia and hypocapnia measured by positron emission tomography. J Cereb Blood FLow Metab. 2003;23:665–70. https://doi.org/10.1097/01.WCB.0000067721.64998.F5 .
Hauck EF, Apostel S, Hoffmann JF, Heimann A, Kempski O. Capillary flow and diameter changes during reperfusion after global cerebral ischemia studied by intravital video microscopy. J Cereb Blood Flow Metab. 2004;24(4):383–91. https://doi.org/10.1097/00004647-200404000-00003 .
Sokolova IA, Manukhina EB, Blinkov SM, Koshelev VB, Pinelis VG, Rodionov IM. Rarefication of the arterioles and capillary network in the brain of rats with different forms of hypertension. Microvasc Res. 1985;30(1):1–9. https://doi.org/10.1016/0026-2862(85)90032-9 .
Ehlers W, Wagner A. Multi-component modelling of human brain tissue: a contribution to the constitutive and computational description of deformation, flow and diffusion processes with application to the invasive drug-delivery problem. Comput Methods Biomech Biomed Eng. 2015;18(8):861–79. https://doi.org/10.1080/10255842.2013.853754 .
Tan WHK, Lee T, Wang CH. Simulation of intratumoral release of etanidazole: effects of the size of surgical opening. J Pharm Sci. 2003;92(4):773–89. https://doi.org/10.1002/jps.10351 .
Shimono M. Non-uniformity of cell density and networks in the monkey brain. Sci Rep. 2013;3:2541. https://doi.org/10.1038/srep02541 .
Shah AK, Kreibich AD, Amdam GV, Münch D. Metabolic enzymes in glial cells of the honeybee brain and their associations with aging, starvation and food response. PLoS ONE. 2018;13(6):0198322. https://doi.org/10.1371/journal.pone.0198322 .
Krogh A. The rate of diffusion of gases through animal tissues, with some remarks on the coefficient of invasion. J Physiol. 1919;52(6):391–408. https://doi.org/10.1113/jphysiol.1919.sp001838 .
Calvetti D, Cheng Y, Somersalo E. A spatially distributed computational model of brain cellular metabolism. J Theor Biol. 2015;376:48–65. https://doi.org/10.1016/j.jtbi.2015.03.037 .
Renkin EM. Transport of potassium-42 from blood to tissue in isolated mammalian skeletal muscles. Am J Physiol Leg Content. 1959;197(6):1205–10. https://doi.org/10.1152/ajplegacy.1959.197.6.1205 .
Crone C. The permeability of capillaries in various organs as determined by use of the ‘indicator diffusion’ method. Acta Physiol. 1963;58(4):292–305. https://doi.org/10.1111/j.1748-1716.1963.tb02652.x .
Lorthois S, Duru P, Billanou I, Quintard M, Celsis P. Kinetic modeling in the context of cerebral blood flow quantification by H215O positron emission tomography: the meaning of the permeability coefficient in Renkin–Crone’s model revisited at capillary scale. J Theor Biol. 2014;353:157–69. https://doi.org/10.1016/j.jtbi.2014.03.004 .
Fang Q, Sakadzic S, Ruvinskaya L, Devor A, Dale AM, Boas DA. Oxygen advection and diffusion in a three-dimensional vascular anatomical network. Opt Express. 2008;16(22):17530–41.
Boujelben A, Watson M, McDougall S, Yen Y-F, Gerstner ER, Catana C, Deisboeck T, Batchelor TT, Boas D, Rosen B, Kalpathy-Cramer J, Chaplain MAJ. Multimodality imaging and mathematical modelling of drug delivery to glioblastomas. Interface Focus. 2016;6(5):20160039.
Gould IG, Tsai P, Kleinfeld D, Linninger A. The capillary bed offers the largest hemodynamic resistance to the cortical blood supply. J Cereb Blood Flow Metab. 2017;37(1):52–68.
Sweeney PW, Walker-Samuel S, Shipley RJ. Insights into cerebral haemodynamics and oxygenation utilising in vivo mural cell imaging and mathematical modelling. Sci Rep. 2018;8(1):1373.
Di Giovanna AP, Tibo A, Silvestri L, Müllenbroich MC, Constantini I, Mascaro ALA, Sacconi L, Frasconi P, Pavone FS. Whole-brain vasculature reconstruction at the single capillary level. Sci Rep. 2018;8(12573):1–11.
Su S-W, Catherall M, Payne S. The influence of network structure on the transport of blood in the human cerebral microvasculature. Microcirculation. 2012;19(2):175–87.
Linninger AA, Gould IG, Marinnan T, Hsu C-Y, Chojecki M, Alaraj A. Cerebral microcirculation and oxygen tension in the human secondary cortex. Ann Biomed Eng. 2013;41(11):2264–84. https://doi.org/10.1007/s10439-013-0828-0 .
Park CS, Payne SJ. Modelling the effects of cerebral microvasculature morphology on oxygen transport. Med Eng Phys. 2016;38:41–7. https://doi.org/10.1016/j.medengphy.2015.09.004 .
Merrem A, Bartzsch S, Laissue J, Oelfke U. Computational modelling of the cerebral cortical microvasculature: effect of X-ray microbeams versus broad beam irradiation. Phys Med Biol. 2017;62(10):3902–22. https://doi.org/10.1088/1361-6560/aa68d5 .
Smith AF, Doyeux V, Berg M, Peyrounette M, Haft-Javaherian M, Larue A-E, Slater JH, Lauwers F, Blinder P, Tsai P, Kleinfeld D, Schaffer CB, Nishimura N, Davit Y, Lorthois S. Brain capillary networks across species: a few simple organizational requirements are sufficient to reproduce both structure and function. Front Physiol. 2019;10:233. https://doi.org/10.3389/fphys.2019.00233 .
Langhoff W, Riggs A, Hinow P. Scaling behavior of drug transport and absorption in in silico cerebral capillary networks. PLoS ONE. 2018;13(7):0200266. https://doi.org/10.1371/journal.pone.0200266 .
Nhan T, Burgess A, Lilge L, Hynynen K. Modeling localized delivery of doxorubicin to the brain following focused ultrasound enhanced blood–brain barrier permeability. Phys Med Biol. 2014;59:5987–6004. https://doi.org/10.1088/0031-9155/59/20/5987 .
Nicholson C. Interaction between diffusion and Michaelis–Menten uptake of dopamine after lontophoresis in striatum. Biophys J. 1995;68(5):1699–715. https://doi.org/10.1016/S0006-3495(95)80348-6 .
de Lange E, Bouw MR, Mandema JW, Danhof M, de Boer AG, Breimer DD. Application of intracerebral microdialysis to study regional distribution kinetics of drugs in rat brain. Br J Pharmacol. 1995;116(5):2538–44. https://doi.org/10.1111/j.1476-5381.1995.tb15107.x .
Nicholson C. Diffusion and related transport mechanisms in brain tissue. Rep Prog Phys. 2001;64(7):815. https://doi.org/10.1088/0034-4885/64/7/202 .
Linninger AA, Somayaji MR, Xenos M, Kondapalli S. Drug delivery into the human brain. In: Proceedings: foundations of systems biology and engineering (FOSBE); 2005. p. 163–8.
Linninger AA, Somayaji MR, Erickson T, Guo X, Penn RD. Computational methods for predicting drug transport in anisotropic and heterogeneous brain tissue. J Biomech. 2008;41:2176–87. https://doi.org/10.1016/j.jbiomech.2008.04.025 .
Zhan W, Arifin DY, Lee TKY, Wang C-h. Mathematical modelling of convection enhanced delivery of Carmustine and paclitaxel for brain tumour therapy. Pharm Res. 2017;34:860–73. https://doi.org/10.1007/s11095-017-2114-6 .
Patlak CS, Fenstermacher JD. Measurements of dog blood–brain transfer constants by ventriculocisternal perfusion. Am J Physiol. 1975;229(4):877–84. https://doi.org/10.1152/ajplegacy.1975.229.4.877 .
Robinson P, Rapoport S. Model for drug uptake by brain tumors: effects of osmotic treatment and of diffusion in brain. J Cereb Blood Flow Metab. 1990;10(2):153–61. https://doi.org/10.1038/jcbfm.1990.30 .
Dykstra KH, Hsiao JK, Morrison PF, Bungay PM, Mefford IN, Scully MM, Dedrick RL. Quantitative examination of tissue concentration profiles associated with microdialysis. J Neurochem. 1992;58(3):931–40. https://doi.org/10.1111/j.1471-4159.1992.tb09346.x .
Stevens J, Ploeger BA, Van Der Graaf PH, Danhof M, De Lange ECM. Systemic and direct nose-to-brain transport pharmacokinetic model for remoxipride after intravenous and intranasal administration. Drug Metab Dispos. 2011;39(12):2275–82. https://doi.org/10.1124/dmd.111.040782 .
Westerhout J, Ploeger B, Smeets J, Danhof M, Lange ECM. Physiologically based pharmacokinetic modeling to investigate regional brain distribution kinetics in rats. AAPS J. 2012;14(3):543–53. https://doi.org/10.1208/s12248-012-9366-1 .
Westerhout J, Smeets J, Danhof M, De Lange ECM. The impact of P-gp functionality on non-steady state relationships between CSF and brain extracellular fluid. J Pharmacokinet Pharmacodyn. 2013;40(3):327–42. https://doi.org/10.1007/s10928-013-9314-4 .
Westerhout J, Van Den Berg DJ, Hartman R, Danhof M, De Lange ECM. Prediction of methotrexate CNS distribution in different species—influence of disease conditions. Eur J Pharm Sci. 2014;57(1):11–24. https://doi.org/10.1016/j.ejps.2013.12.020 .
Kielbasa W, Kalvass JC, Stratford R. Microdialysis evaluation of atomoxetine brain penetration and central nervous system pharmacokinetics in rats. Drug Metab Dispos. 2009;37(1):137–42. https://doi.org/10.1124/dmd.108.023119.was .
Yamamoto Y, Välitalo PA, van den Berg D-J, Hartman R, van den Brink W, Wong YC, Huntjens DR, Proost JH, Vermeulen A, Krauwinkel W, et al. A generic multi-compartmental cns distribution model structure for 9 drugs allows prediction of human brain target site concentrations. Pharm Res. 2016;. https://doi.org/10.1007/s11095-016-2065-3 .
Ball K. A physiologically based modeling strategy during preclinical CNS drug development. Mol Pharm. 2014;11:836–48. https://doi.org/10.1021/mp400533q .
Yamamoto Y, Välitalo PA, Huntjens DR, Proost JH, Vermeulen A, Krauwinkel W, Beukers MW, van den Berg D-J, Hartman R, Wong YC, et al. Predicting drug concentration-time profiles in multiple CNS compartments using a comprehensive physiologically-based pharmacokinetic model. CPT Pharmacometrics Syst Pharmacol. 2017;6(11):765–77. https://doi.org/10.1002/psp4.12250 .
Weiss N, Miller F, Cazaubon S, Couraud P-O. The blood–brain barrier in brain homeostasis and neurological diseases. Biochim Biophys Acta. 2009;1788(4):842–57. https://doi.org/10.1016/j.bbamem.2008.10.022 .
Gaohua L, Neuhoff S, Johnson TN, Rostami-hodjegan A. Development of a permeability-limited model of the human brain and cerebrospinal fl uid (CSF) to integrate known physiological and biological knowledge: estimating time varying CSF drug concentrations and their variability using in vitro data. Drug Metab Pharmacokinet. 2016;31(3):224–33. https://doi.org/10.1016/j.dmpk.2016.03.005 .
Bickel U. How to measure drug transport across the blood–brain barrier. NeuroRx. 2005;2(1):15–26. https://doi.org/10.1602/neurorx.2.1.15 .
Syvänen S, Xie R, Sahin S, Hammarlund-Udenaes M. Pharmacokinetic consequences of active drug efflux at the blood–brain barrier. Pharm Res. 2006;23(4):705–17. https://doi.org/10.1007/s11095-006-9780-0 .
Einstein A. Investigations on the theory of the Brownian movement. New York: Dover Publications; 1956.
Nicholson C, Phillips JM. Diffusion, from an iontophoretic point source in the brain: role of tortuosity and volume fraction. Brain Res. 1979;169:580–4. https://doi.org/10.1016/0006-8993(79)90408-6 .
Hrabe J, Hrabĕtová S, Segeth K. A model of effective diffusion and tortuosity in the extracellular space of the brain. Biophys J. 2004;87(3):1606–17. https://doi.org/10.1529/biophysj.103.039495 .
Nicholson C. Brain extracellular space: the final frontier of neuroscience. Biophys J. 2017;. https://doi.org/10.1016/j.bpj.2017.06.052 .
Chen KC, Hoistad M, Kehr J, Fuxe K, Nicholson C. Quantitative dual-probe microdialysis: mathematical model and analysis. J Neurochem. 2002;81(1):94–107. https://doi.org/10.1046/j.1471-4159.2002.00792.x .
Saltzman WM, Radomsky ML. Drugs released from polymers: diffusion and elimination in brain tissue. Chem Eng Sci. 1991;46(10):2429–44. https://doi.org/10.1016/0009-2509(91)80036-X .
Levin VA, Patlak CS, Laudahl HD. Heuristic modeling of drug delivery to malignant brain tumors. J Pharm Biopharm. 1980;. https://doi.org/10.1007/bf01059646 .
Hammarlund-Udenaes M, Fridén M, Syvänen S, Gupta A. On the rate and extent of drug delivery to the brain. Pharm Res. 2008;25(8):1737–50. https://doi.org/10.1007/s11095-007-9502-2 .
Xiao F, Hrabe J, Hrabetova S. Anomalous extracellular diffusion in rat cerebellum. Biophys J. 2015;108(9):2384–95. https://doi.org/10.1016/j.bpj.2015.02.034 .
Kinney JP, Spacek J, Bartol TM, Bajaj CL, Harris KM, Sejnowski TJ. Extracellular sheets and tunnels modulate glutamate diffusion in hippocampal neuropil. J Comp Neurol. 2013;521(2):448–64. https://doi.org/10.1002/cne.23181 .
Somayaji MR, Xenos M, Zhang L, Mekarski M, Linninger AA. Systematic design of drug delivery therapies. Comput Chem Eng. 2008;32:89–98. https://doi.org/10.1016/j.compchemeng.2007.06.014 .
Tao L, Nicholson C. Maximum geometrical hindrance to diffusion in brain extracellular space surrounding uniformly spaced convex cells. J Theor Biol. 2004;229(1):59–68. https://doi.org/10.1016/j.jtbi.2004.03.003 .
Tao A, Tao L, Nicholson C. Cell cavities increase tortuosity in brain extracellular space. J Theor Biol. 2005;234(4):525–36. https://doi.org/10.1016/j.jtbi.2004.12.009 .
El-Kareh AW, Braunstein SL, Secomb TW. Effect of cell arrangement and interstitial volume fraction on the diffusivity of monoclonal antibodies in tissue. Biophys J. 1993;64:1638–46. https://doi.org/10.1016/s0006-3495(93)81532-7 .
Rusakov DA, Kullmann DM. Geometric and viscous components of the tortuosity of the extracellular space in the brain. Proc Natl Acad Sci USA. 1998;95:8975–80. https://doi.org/10.1073/pnas.95.15.8975 .
Chen KC, Nicholson C. Changes in brain cell shape create residual extracellular space volume and explain tortuosity behavior during osmotic challenge. Proc Natl Acad Sci. 2000;97(15):8306–11. https://doi.org/10.1073/pnas.150338197 .
García JJ, Smith JH. A biphasic hyperelastic model for the analysis of fluid and mass transport in brain tissue. Ann Biomed Eng. 2009;37(2):375–86. https://doi.org/10.1007/s10439-008-9610-0 .
Hossain SS, Hossainy SF, Bazilevs Y, Calo VM, Hughes TJ. Mathematical modeling of coupled drug and drug-encapsulated nanoparticle transport in patient-specific coronary artery walls. Comput Mech. 2012;49(2):213–42. https://doi.org/10.1007/s00466-011-0633-2 .
Støverud KH, Darcis M, Helmig R, Hassanizadeh SM. Modeling concentration distribution and deformation during convection-enhanced drug delivery into brain tissue. Transp Porous Medium. 2012;92:119–43. https://doi.org/10.1007/s11242-011-9894-7 .
Linninger A, Hartung GA, Liu BP, Mirkov S, Tangen K, Lukas RV, Unruh D, James CD, Sarkaria JN, Horbinksi C. Modeling the diffusion of D-2-hydroxyglutarate from IDH1 mutant gliomas in the central nervous system. Neuro-oncology. 2018;20(9):1197–206. https://doi.org/10.1093/neuonc/noy051 .
Nicholson C, Kamali-Zare P, Tao L. Brain extracellular space as a diffusion barrier. Comput Vis Sci. 2011;14(7):309–25. https://doi.org/10.1038/nature13314.A .
Tao L. Effects of osmotic stress on dextran diffusion in rat neocortex studied with integrative optical imaging. J Neurophysiol. 1999;81(5):2501–7. https://doi.org/10.1152/jn.1999.81.5.25010 .
Hrabětová S. Extracellular diffusion is fast and Isotropic in the stratum radiatum of hippocampal CA1 region in rat brain slices. Hippocampus. 2005;450:441–50. https://doi.org/10.1002/hipo.20068 .
Thorne RG, Hrabe S, Nicholson C, Robert G. Diffusion of epidermal growth factor in rat brain extracellular space measured by integrative optical imaging. J Neurophysiol. 2004;92(6):3471–81. https://doi.org/10.1152/jn.00352.2004 .
Thorne RG, Nicholson C. In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space. Proc Natl Acad Sci. 2006;103(14):5567–72. https://doi.org/10.1073/pnas.0509425103 .
Prokopovà-Kubinovà Š, Vargova L, Tao L, Ulbrich K, Šubr V, Sykova E, Nicholson C. Poly[N-(2-hydroxypropyl)methacrylamide] polymers diffuse in brain extracellular space with same tortuosity as small molecules. Biophysic Chem. 2001;80:542–8. https://doi.org/10.1016/S0006-3495(01)76036-5 .
Wolak DJ, Pizzo ME, Thorne RG. Probing the extracellular diffusion of antibodies in brain using in vivo integrative optical imaging and ex vivo fluorescence imaging. J Control Release. 2015;197:78–86. https://doi.org/10.1016/j.jconrel.2014.10.034 .
Nicholson C, Phillips J. Ion diffusion modified by tortuosity and volume fraction in the extracellular microenvironment of the rat cerebellum. J Physiol. 1981;321:225. https://doi.org/10.1113/jphysiol.1981.sp013981 .
Han H, Shee C, Fu Y, Zuo L, Lee K, He Q, Han H. A novel MRI tracer-based method for measuring water diffusion in the extracellular space of the rat brain. IEEE J Biomed Health Inform. 2014;18(3):978–83. https://doi.org/10.1109/jbhi.2014.2308279 .
Le Bihan D. Looking Into the functional architecture of the brain with diffusion MRI. Nat Rev Neurosci. 2003;4:469–80. https://doi.org/10.1038/nrn1119 .
Pappenheimer JR, Renkin EM, Borrero LM. Filtration, diffusion and molecular sieving through peripheral capillary membranes. Am J Physiol. 1951;167(1):13–46. https://doi.org/10.1152/ajplegacy.1951.167.1.13 .
Deen WM. Hindered transport of large molecules in liquid-filled pores. AIChE J. 1987;33(9):1409–25. https://doi.org/10.1002/aic.690330902 .
Morrison PF, Dedrick RL. Transport of cisplatin in ratbrain following microinfusion: an analysis. J Pharm Sci. 1986;75(2):120–8. https://doi.org/10.1002/jps.2600750204 .
Bungay PM, Morrison PF, Dedrick RL. Steady-state theory for quantitative microdialysis of solutes and water in vivo and in vitro. Life Sci. 1990;46:105–19. https://doi.org/10.1016/0024-3205(90)90043-q .
Zhan W, Jiang L, Loew MH, Yang Y. Mapping spatiotemporal diffusion inside the human brain using a numerical solution of the diffusion equation. Magn Reson Imaging. 2008;26(5):694–702. https://doi.org/10.1007/s11095-006-9780-0 .
Amberg G, Linderfors N. lntracerebral microdialysis: diffusion kinetics II. Mathematical studies of diffusion kinetics. J Pharmacol Methods. 1989;183:157–83. https://doi.org/10.1016/0160-5402(89)90012-0 .
Benveniste H, Hansen AJ, Ottosen S. Determination of brain interstitial concentrations by microdialysis. J Neurochem. 1989;52(6):1741–50. https://doi.org/10.1111/j.1471-4159.1989.tb07252.x .
Morrison PF, Laske DW, Bobo H, Oldfield EH, Dedrick RL. High-flow microinfusion: tissue penetration and pharmacodynamics. Am J Physiol. 1994;266(1 Pt 2):292–305. https://doi.org/10.1152/ajpregu.1994.266.1.r292 .
Hoistad M, Chen KC, Nicholson C, Fuxe K, Kehr J. Quantitative dual-probe microdialysis: evaluation of [3H] mannitol diffusion in agar and rat striatum. Circ Res. 2002;81(1):80–93. https://doi.org/10.1046/j.1471-4159.2002.00791.x .
Tong S, Yuan F. An equivalent length model of microdialysis sampling. J Pharm Biomed Anal. 2002;28:269–78. https://doi.org/10.1016/s0731-7085(01)00565-9 .
Bungay PM, Sumbria RK, Bickel U. Unifying the mathematical modeling of in vivo and in vitro microdialysis. Biophys Chem. 2011;257(5):2432–7. https://doi.org/10.1016/j.immuni.2010.12.017.Two-stage. .
Fung LLK, Shin M, Tyler B, Brem H, Saltzman WM. Chemotherapeutic drugs released from polymers: distribution of 1,3-bis(2-chloroethyl)-l-nitrosourea in the rat brain. Pharm Res. 1996;13(5):671–82.
Sarntinoranont M, Chen X, Zhao J, Mareci TH. Computational model of interstitial transport in the spinal cord using diffusion tensor imaging. Ann Biomed Eng. 2006;34(8):1304–21. https://doi.org/10.1007/s10439-006-9135-3 .
Kim JH, Mareci TH, Sarntinoranont M. A voxelized model of direct infusion into the corpus callosum and hippocampus of the rat brain: model development and parameter analysis. Med Biol Eng Comput. 2010;48:203–14. https://doi.org/10.1007/s11517-009-0564-7 .
Raghavan R, Brady M. Predictive models for pressure-driven fluid infusions into brain parenchyma. Phys Med Biol. 2011;56(19):6179–204. https://doi.org/10.1088/0031-9155/56/19/003 .
Sampson JH, Raghavan R, Brady ML, Provenzale JM, Ii EH, Croteau D, Friedman AH, Reardon DA, Edward R, Wong T, Bigner DD, Pastan I, Rodríguez- MI, Tanner P, Puri R, Pedain C. Clinical utility of a patient-specific algorithm for simulating intracerebral drug infusions. Neuro-oncology. 2007;. https://doi.org/10.1215/15228517 .
Tangen KM, Hsu Y, Zhu DC, Linninger A. CNS wide simulation of flow resistance and drug transport due to spinal microanatomy. J Biomech. 2015;48:2144–54. https://doi.org/10.1016/j.jbiomech.2015.02.018 .
Lawrence JJ, Coenen W, Sánchez AL, Pawlak G, Martínez-Bazán C, Haughton V, Lasheras JC. On the dispersion of a drug delivered intrathecally in the spinal canal. J Fluid Mech. 2019;861:679–720. https://doi.org/10.1017/jfm.2018.937 .
Tangen KM, Leval R, Mehta AI, Linninger A. Computational and in vitro experimental investigation of intrathecal drug distribution: parametric study of the effect of injection volume, cerebrospinal fluid pulsatility, and drug uptake. Anesth Analg. 2017;124(5):1686–96. https://doi.org/10.1213/ANE.0000000000002011 .
Sánchez AL, Martínez-Bazán C, Gutiérrez-Montes C, Criado-Hidalgo E, Pawlak G, Bradley W, Haughton V, Lasheras JC. On the bulk motion of the cerebrospinal fluid in the spinal canal. J Fluid Mech. 2018;841:203–27. https://doi.org/10.1017/jfm.2018.67 .
Linge S, Haughton V, Løvgren A, Mardal K, Langtangen H. Csf flow dynamics at the craniovertebral junction studied with an idealized model of the subarachnoid space and computational flow analysis. Am J Neuroradiol. 2010;31(1):185–92.
Sweetman B, Xenos M, Zitella L, Linninger AA. Three-dimensional computational prediction of cerebrospinal fluid flow in the human brain. Comput Biol Med. 2011;41(2):67–75.
Sass LR, Khani M, Natividad GC, Tubbs RS, Baledent O, Martin BA. A 3D subject-specific model of the spinal subarachnoid space with anatomically realistic ventral and dorsal spinal cord nerve rootlets. Fluids Barriers CNS. 2017;14(1):36.
Bloch R, Talalla A. A mathematical model of cerebrospinal fluid dynamics. J Neurol Sci. 1976;27(4):485–98.
Kuttler A, Dimke T, Kern S, Helmlinger G, Stanski D, Finelli LA. Understanding pharmacokinetics using realistic computational models of fluid dynamics: biosimulation of drug distribution within the CSF space for intrathecal drugs. J Pharmacokinet Pharmacodyn. 2010;37(6):629–44.
Nicholson C, Chen KC, Hrabětová S, Tao L. Diffusion of molecules in brain extracellular space: theory and experiment. Prog Brain Res. 2000;125:129–54. https://doi.org/10.1016/s0079-6123(00)25007-3 .
Zhan W, Xu XY. A mathematical model for thermosensitive liposomal delivery of doxorubicin to solid tumour. J Drug Deliv. 2013;. https://doi.org/10.1016/j.mri.2008.01.025 .
Horn AS. Characteristics of dopamine uptake. In: Horn AS, Korf J, Westerink BHC, editors. The neurobiology of dopamine. London: Academic; 1979. p. 217–35.
Tzafriri AR, Groothuis A, Price GS, Edelman ER. Stent elution rate determines drug deposition and receptor-mediated effects. J Control Release. 2012;161(3):918–26. https://doi.org/10.1016/j.jconrel.2012.05.039 .
McGinty S, Pontrelli G. A general model of coupled drug release and tissue absorption for drug delivery devices. J Control Release. 2015;217:327–36. https://doi.org/10.1016/j.jconrel.2015.09.025 .
McGinty S, Pontrelli G. On the role of specific drug binding in modelling arterial eluting stents. J Math Chem. 2016;54(4):967–76. https://doi.org/10.1007/s10910-016-0618-7 .
Rowland M, Peck C, Tucker G. Physiologically-based pharmacokinetics in drug development and regulatory science. Annu Rev Pharmacol Toxicol. 2011;51:45–73. https://doi.org/10.1146/annurev-pharmtox-010510-100540 .
Jung A, Faltermeier R, Rothoerl R, Brawanski A. A mathematical model of cerebral circulation and oxygen supply. J Math Biol. 2005;51:491–507. https://doi.org/10.1007/s00285-005-0343-5 .
Linninger AA, Xenos M, Sweetman B, Ponkshe S, Guo X, Penn R. A mathematical model of blood, cerebrospinal fluid and brain dynamics. J Math Biol. 2009;218:729–59. https://doi.org/10.1007/s00285-009-0250-2 .
Collins JM, Dedrick RL. Distributed model for drug delivery to CSF and brain tissue. Am J Physiol Regul Integr Comp Physiol. 1983;245(3):303–10. https://doi.org/10.1152/ajpregu.1983.245.3.r303 .
Karbowski J. Scaling of brain metabolism and blood flow in relation to capillary and neural scaling. PLoS ONE. 2011;6(10):e26709. https://doi.org/10.1371/journal.pone.0026709 . arXiv:1111.3610 .
Meier-Ruge W, Hunziker O, Schulz U, Tobler HJ, Schweizer A. Stereological changes in the capillary network and nerve cells of the aging human brain. Mech Ageing Dev. 1980;14(1–2):233–43.
Farkas E, Luiten PG. Cerebral microvascular pathology in aging and Alzheimer’s disease. Prog Neurobiol. 2001;64(6):575–611.
Metzger H, Heuber-Metzger S, Steinacker A, Strüber J. Staining PO2 measurement sites in the rat brain cortex and quantitative morphometry of the surrounding capillaries. Pflugers Arch. 1980;388(1):21–7.
Gross PM, Sposito NM, Pettersen SE, Fenstermacher JD. Differences in function and structure of the capillary endothelium in gray matter, white matter and a circumventricular organ of rat brain. J Vasc Res. 1986;3(6):261–70. https://doi.org/10.1159/000158652 .
Duvernoy H, Delon S, Vannson JL. The vascularization of the human cerebellar cortex. Brain Res Bull. 1983;11:419–80. https://doi.org/10.1016/0361-9230(83)90116-8 .
Holliger C, Lemley KV, Schmitt SL, Thomas FC, Robertson CR, Jamison RL. Direct determination of vasa recta blood flow in the rat renal papilla. Circ Res. 1981;53(3):401–13.
Cserr H, Cooper D, Suri P, Patlak C. Efflux of radiolabeled polyethylene glycols and albumin from rat brain. Am J Physiol Renal Physiol. 1981;240(4):319–28.
Ivanov KP, Kalinina YI, Levkovich MK. Blood flow velocity in capillaries of brain and muscles and its physiological significance. Microvasc Res. 1981;22(2):143–55. https://doi.org/10.1016/0026-2862(81)90084-4 .
Villringer A, Them A, Lindauer U, Einhäupl K, Dirnagl U. Capillary perfusion of the rat brain cortex. an in vivo confocal microscopy study. Circ Res. 1994;75(1):55–62. https://doi.org/10.1161/01.res.75.1.55 .
Hudetz AG, Biswal BB, Fehér G, Kampine JP. Effects of hypoxia and hypercapnia on capillary flow velocity in the rat cerebral cortex. Microvasc Res. 1997;54(1):35–42. https://doi.org/10.1006/mvre.1997.2023 .
Seylaz J, Charbonné R, Nanri K, Von Euw D, Borredon J, Kacem K, Méric P, Pinard E. Dynamic in vivo measurement of erythrocyte velocity and flow in capillaries and of microvessel diameter in the rat brain by confocal laser microscopy. J Cereb Blood Flow Metab. 1999;19(8):863–70. https://doi.org/10.1097/00004647-199908000-00005 .
Hutchinson EB, Stefanovic B, Koretsky AP, Silva AC. Spatial flow-volume dissociation of the cerebral microcirculatory response to mild hypercapnia. Neuroimage. 2006;32(2):520–30. https://doi.org/10.1016/j.neuroimage.2006.03.033 .
Itoh Y, Suzuki N. Control of brain capillary blood flow. J Cereb Blood Flow Metab. 2012;32(7):1167–76. https://doi.org/10.1038/jcbfm.2012.5 .
Yamamoto Y, Välitalo PA, Wong YC, Huntjens DR, Proost JH, Vermeulen A, Krauwinkel W, Beukers MW, Kokki H, Kokki M, Danhof M, van Hasselt JGC, de Lange ECM. Prediction of human CNS pharmacokinetics using a physiologically-based pharmacokinetic modeling approach. Eur J Pharm Sci. 2018;112:168–79.
Cornford EM, Hyman S. Localization of brain endothelial luminal and abluminal transporters with immunogold electron microscopy. NeuroRx. 2005;2(1):27–43.
Lentz KA, Polli JW, Wring SA, Humphreys JE, Polli JE. Influence of passive permeability on apparent p-glycoprotein kinetics. Pharm Res. 2000;17(12):1456–60.
Hoffmann J, Fichtner I, Lemm M, Lienau P, Hess-Stumpp H, Rotgeri A, Hofmann B, Klar U. Sagopilone crosses the blood–brain barrier in vivo to inhibit brain tumor growth and metastases. Neuro-oncology. 2009;11(2):158–66. https://doi.org/10.1215/15228517-2008-072 .
Kumar G, Smith QR, Hokari M, Parepally J, Duncan MW. Brain uptake, pharmacokinetics, and tissue distribution in the rat of neurotoxic n-butylbenzenesulfonamide. Toxicol Sci. 2007;97(2):253–64.
Skipor J, Thiery J-C. The choroid plexus-cerebrospinal fluid system: undervaluated pathway of neuroendocrine signaling into the brain. Acta Neurobiol Exp (Wars). 2008;68(3):414–28.
Westerhout J, Danhof M, Lange ECM. Preclinical prediction of human brain target site concentrations. J Pharm Sci. 2011;100(9):3577–93. https://doi.org/10.1002/jps.22604 .
Strazielle N, Ghersi-Egea J-F. Choroid plexus in the central nervous system: biology and physiopathology. J Neuropathol Exp Neurol. 2000;59(7):561–74.
Fung LK, Ewend MG, Sills A, Sipos EP, Thompson R, Watts M, Colvin OM, Brem H, Saltzman WM. Pharmacokinetics of interstitial delivery of carmustine, 4-hydroperoxycyclophosphamide, and paclitaxel from a biodegradable polymer implant in the monkey brain. Cancer Res. 1998;58(4):672–84.
Saltzman W. Interstitial transport in the brain: principles for local drug delivery. The biomedical engineering handbook. 2nd ed. Boca Raton: CRC; 2000.
de Witte WE, Rottschäfer V, Danhof M, van der Graaf PH, Peletier LA, de Lange EC. Modelling the delay between pharmacokinetics and eeg effects of morphine in rats: binding kinetic versus effect compartment models. J Pharmacokinet Pharmacodyn. 2018;45(4):621–35.
Dahl G, Akerud T. Pharmacokinetics and the drug-target residence time concept. Drug Discov Today. 2013;18(15–16):697–707. https://doi.org/10.1016/j.drudis.2013.02.010 .
Selvaggio G, Pearlstein RA. Biodynamics: a novel quasi-first principles theory on the fundamental mechanisms of cellular function/dysfunction and the pharmacological modulation thereof. PLoS ONE. 2018;13(11):0202376.
Fang J. Metabolism of clozapine by rat brain: the role of flavin-containing monooxygenase (fmo) and cytochrome p450 enzymes. Eur J Drug Metab Pharmacokinet. 2000;25(2):109–14.
Openstax college, anatomy & physiology, openstax cnx. 2016. http://cnx.org/contents/[email protected]:DcB5rjNc@3/Circulation-and-the-Central-Nervous-System . Accessed 9 Oct 2018.
Thrane AS, Thrane VR, Nedergaard M. Drowning stars: reassessing the role of astrocytes in brain edema. Trends Neurosci. 2014;37(11):620–8. https://doi.org/10.1016/j.tins.2014.08.010 .
National Library of Medicine (US). Genetics home reference. Bethesda (MD): The library: alveolar capillary dysplasia with misalignment of pulmonary veins; 2018. https://ghr.nlm.nih.gov/condition/alveolar-capillary-dysplasia-with-misalignment-of-pulmonary-veins . Accessed 28 Nov 2018.
911Stroke.info: A educational web site on stroke with full text journal link. http://911stroke.info/brainVesselsCorosionCast.jpg . Accessed 24 Apr 2019.