Springer Science and Business Media LLC
Công bố khoa học tiêu biểu
* Dữ liệu chỉ mang tính chất tham khảo
The majority of heterocycle compounds and typically common heterocycle fragments present in most pharmaceuticals currently marketed, alongside with their intrinsic versatility and unique physicochemical properties, have poised them as true cornerstones of medicinal chemistry. Apart from the already marketed drugs, there are many other being investigated for their promising activity against several malignancies. In particular, anticancer research has been capitalizing on the intrinsic versatility and dynamic core scaffold of these compounds. Nevertheless, as for any other promising anticancer drugs, heterocyclic compounds do not come without shortcomings. In this review, we provide for a concise overview of heterocyclic active compounds and families and their main applications in medicine. We shall focus on those suitable for cancer therapy while simultaneously addressing main biochemical modes of action, biological targets, structure-activity relationships as well as intrinsic limitation issues in the use of these compounds. Finally, considering the advent of nanotechnology for effective selective targeting of drugs, we shall discuss fundamental aspects and considerations on nanovectorization of such compounds that may improve pharmacokinetic/pharmacodynamic properties of heterocycles.
For more than a century, heterocycles have constituted one the largest areas of research in organic chemistry.[...]
Gold nanoparticles (Au NPs) were prepared by reducing HAuCl4 with NaBH4. Their average particle sizes could be tuned in the range of 1.7 and 8.2 nm, by adjusting the amount of NaBH4 used during synthesis. The obtained Au NPs (colloids) were then loaded onto a commercial Al2O3 support to prepare Au/Al2O3 catalysts with tunable Au particle sizes. An optimal pH value (5.9) of the Au colloid solution was found to be essential for loading Au NPs onto Al2O3 while avoiding the growth of Au NPs. Au NPs and Au/Al2O3 catalysts were tested in the reduction of p-nitrophenol with NaBH4. Interestingly, the catalytic activity depended on the size of Au NPs, being the highest when the average size was 3.4 nm. Relevant characterization by UV-Vis, TEM, and XRD was conducted.
From the early precipitation-based techniques, introduced more than a century ago, to the latest development of enzymatic bio- and nano-sensor applications, the analysis of phytic acid and/or other inositol phosphates has never been a straightforward analytical task. Due to the biomedical importance, such as antinutritional, antioxidant and anticancer effects, several types of methodologies were investigated over the years to develop a reliable determination of these intriguing analytes in many types of biological samples; from various foodstuffs to living cell organisms. The main aim of the present work was to critically overview the development of the most relevant analytical principles, separation and detection methods that have been applied in order to overcome the difficulties with specific chemical properties of inositol phosphates, their interferences, absence of characteristic signal (e.g., absorbance), and strong binding interactions with (multivalent) metals and other biological molecules present in the sample matrix. A systematical and chronological review of the applied methodology and the detection system is given, ranging from the very beginnings of the classical gravimetric and titrimetric analysis, through the potentiometric titrations, chromatographic and electrophoretic separation techniques, to the use of spectroscopic methods and of the recently reported fluorescence and voltammetric bio- and nano-sensors.
A new phenylpropanoid glycoside (1), and two new coumarin glycosides (2, 3), together with two known compounds (4, 5), have been isolated from the stems of Hydrangea paniculata Sieb. Their structures have been determined by spectroscopic and chemical methods. Furthermore, compound 1 (50 μM) exhibited significant hepatoprotective activity against N-acetyl-p-aminophenol (APAP)-induced HepG2 cell damage in vitro assays.
Zirconia powder was synthesized via a sol gel method and placed in a batch reactor for cesium removal investigation. X-ray analysis and Fourier transform infrared spectroscopy were utilized for the evaluation of the developed adsorbent. The adsorption process has been investigated as a function of pH, contact time and temperature. The adsorption is strongly dependent on the pH of the medium whereby the removal efficiency increases as the pH turns to the alkaline range. The process was initially very fast and the maximum adsorption was attained within 60 min of contact. A pseudo-second-order model and homogeneous particle diffusion model (HPDM) were found to be the best to correlate the diffusion of cesium into the zirconia particles. Furthermore, adsorption thermodynamic parameters, namely the standard enthalpy, entropy, and Gibbs free energy, were calculated. The results indicate that cesium adsorption by zirconia is an endothermic (ΔH > 0) process and good affinity of cesium ions towards the sorbent (ΔS > 0) was observed.
Indobufen is a new generation of anti-platelet aggregation drug, but studies were not sufficient on its anticoagulant effects. In the present study, the anticoagulant activity of indobufen was determined by monitoring the activated partial thromboplastin time (APTT), prothrombin time (PT), and thrombin time (TT) in rabbit plasma. We evaluated the anticoagulant mechanisms on the content of the platelet factor 3,4 (PF3,4), and the coagulation factor 1, 2, 5, 8, 10 (FI, II, V, VIII, X) in rabbits, as well as the in vivo bleeding time and clotting time in mice. The pharmacodynamic differences between indobufen and warfarin sodium, rivaroxaban, and dabigatran were further studied on thrombus formation and the content of FII and FX in rats. Animal experiments showed that intragastric-administrated indobufen can significantly reduce the APTT, PT, TT, PF3, FI, II, V, VIII, and X plasma contents. Its inhibitory effect on plasma FII was better than thrombin inhibitor dabigatran with effect on FX better than FXa inhibitor rivaroxaban. These results suggest that indobufen has some anticoagulant effects as strong as some conventional anticoagulants. The mechanism may be related to both exogenous and endogenous coagulation system.
Any release of radioactive cesium-137, due to unintentional accidents in nuclear plants, represents a dangerous threat for human health and the environment. Prussian blue has been widely studied and used as an antidote for humans exposed to acute internal contamination by Cs-137, due to its ability to act as a selective adsorption agent and to its negligible toxicity. In the present work, the synthesis protocol has been revisited avoiding the use of organic solvents to obtain Prussian blue nanoparticles with morphological and textural properties, which positively influence its Cs+ binding capacity compared to a commercially available Prussian blue sample. The reduction of the particle size and the increase in the specific surface area and pore volume values compared to the commercial Prussian blue reference led to a more rapid uptake of caesium in simulated enteric fluid solution (+35% after 1 h of contact). Then, after 24 h of contact, both solids were able to remove >98% of the initial Cs+ content. The Prussian blue nanoparticles showed a weak inhibition of the bacterial luminescence in the aqueous phase and no chronic detrimental toxic effects.
Natural products and traditional medicines are of great importance. Such forms of medicine as traditional Chinese medicine, Ayurveda, Kampo, traditional Korean medicine, and Unani have been practiced in some areas of the world and have blossomed into orderly-regulated systems of medicine. This study aims to review the literature on the relationship among natural products, traditional medicines, and modern medicine, and to explore the possible concepts and methodologies from natural products and traditional medicines to further develop drug discovery. The unique characteristics of theory, application, current role or status, and modern research of eight kinds of traditional medicine systems are summarized in this study. Although only a tiny fraction of the existing plant species have been scientifically researched for bioactivities since 1805, when the first pharmacologically-active compound morphine was isolated from opium, natural products and traditional medicines have already made fruitful contributions for modern medicine. When used to develop new drugs, natural products and traditional medicines have their incomparable advantages, such as abundant clinical experiences, and their unique diversity of chemical structures and biological activities.
- 1
- 2
- 3
- 4
- 5
- 6
- 10