Encapsulation of Essential Oils for the Development of Biosourced Pesticides with Controlled Release: A Review

Springer Science and Business Media LLC - Tập 24 Số 14 - Trang 2539
Bart Maes1,2,3, Bouquillon1,3, Marie‐Laure Fauconnier2,3
1Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, Université Reims-Champagne-Ardenne, UFR Sciences, BP 1039 boîte 44, 51687 Reims Cedex 2, France
2Laboratoire de Chimie des Molécules Naturelles. Gembloux Agro-Bio Tech, Université de Liège, 2 Passage des Déportés, 5030 Gembloux, Belgium
3SFR Condorcet FR CNRS 3417, Université Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, BP 1039, 51687 Reims CEDEX 02, France

Tóm tắt

Essential oil (EO) encapsulation can be carried out via a multitude of techniques, depending on applications. Because of EOs’ biological activities, the development of biosourced pesticides with EO encapsulation is of great interest. A lot of methods have been developed; they are presented in this review, together with the properties of the final products. Encapsulation conserves and protects EOs from outside aggression, but also allows for controlled release, which is useful for applications in agronomy. The focus is on the matrices that are of interest for the controlled release of their content, namely: alginate, chitosan, and cyclodextrin. Those three matrices are used with several methods in order to create EO encapsulation with different structures, capacities, and release profiles.

Từ khóa


Tài liệu tham khảo

Miladi, 2015, Essential oils: From extraction to encapsulation, Int. J. Pharm., 483, 220, 10.1016/j.ijpharm.2014.12.069

Obolskiy, 2011, Artemisia dracunculus L. (tarragon): A critical review of its traditional use, chemical composition, pharmacology, and safety, J. Agric. Food Chem., 59, 11367, 10.1021/jf202277w

Husnu Can Baser, K., and Buchbauer, G. (2015). Handbook of Essential Oils: Science, Technology, and Applications, CRC Press. [2nd ed.].

Pejin, 2011, Preliminary Data on Essential Oil Composition of the Moss Rhodobryum ontariense (Kindb.) Kindb, Cryptogam. Bryol., 32, 113, 10.7872/cryb.v32.iss1.2011.113

David, A., Wang, F., Sun, X., Li, H., Lin, J., Li, P., Deng, G., David, A., Wang, F., and Sun, X. (2019). Chemical Composition, Antioxidant, and Antimicrobial Activities of Vetiveria zizanioides (L.) Nash Essential Oil Extracted by Carbon Dioxide Expanded Ethanol. Molecules, 24.

Almeida, 2013, Microencapsulation of oregano essential oil in starch-based materials using supercritical fluid technology, Innov. Food Sci. Emerg. Technol., 20, 140, 10.1016/j.ifset.2013.07.009

Brada, 2018, Optimization of Algerian Thymus fontanesii Boiss. & amp; Reut Essential Oil Extraction by Electromagnetic Induction Heating, Nat. Prod. Sci., 24, 71, 10.20307/nps.2018.24.1.71

Suhajda, 2005, Essential oil composition and antimicrobial activity of Origanum majorana L. extracts obtained with ethyl alcohol and supercritical carbon dioxide, Food Res. Int., 38, 51, 10.1016/j.foodres.2004.07.006

Peng, Y., Bishop, K.S., Quek, S.Y., Peng, Y., Bishop, K.S., and Quek, S.Y. (2019). Compositional Analysis and Aroma Evaluation of Feijoa Essential Oils from New Zealand Grown Cultivars. Molecules, 24.

Soilhi, 2019, Essential oil chemical diversity of Tunisian Mentha spp. collection, Ind. Crops Prod., 131, 330, 10.1016/j.indcrop.2019.01.041

Moncada, 2014, Techno-economic and environmental assessment of essential oil extraction from Citronella (Cymbopogon winteriana) and Lemongrass (Cymbopogon citrus): A Colombian case to evaluate different extraction technologies, Ind. Crops Prod., 54, 175, 10.1016/j.indcrop.2014.01.035

Kakaraparthi, 2014, Variation in the essential oil content and composition of Citronella (Cymbopogon winterianus Jowitt.) in relation to time of harvest and weather conditions, Ind. Crops Prod., 61, 240, 10.1016/j.indcrop.2014.06.044

Thiam, 2018, Effect of drying methods on the chemical composition of essential oils of Xylopia aethiopicafruits (Dunal) A. Richard (Annonaceae) from southern Senegal, Am. J. Essent. Oils Nat. Prod., 6, 25

Kaab, 2019, Bioactive compounds and antioxidant activity of Pimpinella anisum L. accessions at different ripening stages, Sci. Hortic., 246, 453, 10.1016/j.scienta.2018.11.016

Friedman, 2014, Chemistry and multibeneficial bioactivities of carvacrol (4-isopropyl-2-methylphenol), a component of essential oils produced by aromatic plants and spices, J. Agric. Food Chem., 62, 7652, 10.1021/jf5023862

Jing, 2014, Antifungal activity of citrus essential oils, J. Agric. Food Chem., 62, 3011, 10.1021/jf5006148

Amorati, 2013, Antioxidant activity of essential oils, J. Agric. Food Chem., 61, 10835, 10.1021/jf403496k

Suppakul, 2003, Antimicrobial properties of basil and its possible application in food packaging, J. Agric. Food Chem., 51, 3197, 10.1021/jf021038t

Rebey, 2019, Rosmarinus officinalis essential oil as an effective antifungal and herbicidal agent, Span. J. Agric. Res., 17, e1006, 10.5424/sjar/2019172-14043

Youssefi, M.R., Moghaddas, E., Tabari, M.A., Moghadamnia, A.A., Hosseini, S.M., Farash, B.R.H., Ebrahimi, M.A., Mousavi, N.N., Fata, A., and Maggi, F. (2019). In Vitro and In Vivo Effectiveness of Carvacrol, Thymol and Linalool against Leishmania infantum. Molecules, 24.

Pejin, 2013, Chemical composition and biological activity of Gaultheria procumbens L. essential oil, Ind. Crops Prod., 49, 561, 10.1016/j.indcrop.2013.06.002

Lou, 2017, The antioxidant, antibacterial, antibiofilm activity of essential oil from Citrus medica L. var. sarcodactylis and its nanoemulsion, LWT-Food Sci. Technol., 80, 371, 10.1016/j.lwt.2017.02.037

Barzegar, 2017, Chitosan-cinnamon essential oil nano-formulation: Application as a novel additive for controlled release and shelf life extension of beef patties, Int. J. Biol. Macromol., 102, 19, 10.1016/j.ijbiomac.2017.04.002

2017, Release study and inhibitory activity of thyme essential oil-loaded chitosan nanoparticles and nanocapsules against foodborne bacteria, Int. J. Biol. Macromol., 103, 409, 10.1016/j.ijbiomac.2017.05.063

Timung, 2016, Composition and anti-bacterial activity analysis of citronella oil obtained by hydrodistillation: Process optimization study, Ind. Crops Prod., 94, 178, 10.1016/j.indcrop.2016.08.021

Bourkhiss, 2011, Composition chimique et propriétés antimicrobiennes de l’huile essentielle extraite des feuilles de Tetraclinis articulata (Vahl) du Maroc, Afrique Sci. Rev. Int. des Sci. Technol., 3, 232

Bouzouati, 2008, Composition chimique et activités antioxydante, antimicrobienne et insecticide de l’huile essentielle de Juniperus phoenicea, J. Soc. Chim. Tunisie, 10, 119

Tchoumbougnang, 2009, Activité larvicide sur Anopheles gambiae Giles et composition chimique des huiles essentielles extraites de quatre plantes cultivées au Cameroun | Tchoumbougnang | Biotechnologie, Agronomie, Société et Environnement, Biotechnol. Agron. Soc. Environ., 13, 77

Kaur, 2011, Chemical characterization and allelopathic potential of volatile oil of Eucalyptus tereticornis against Amaranthus viridis, J. Plant Interact., 6, 297, 10.1080/17429145.2010.539709

Sumalan, R.M., Alexa, E., Popescu, I., Negrea, M., Radulov, I., Obistioiu, D., Cocan, I., Sumalan, R.M., Alexa, E., and Popescu, I. (2019). Exploring Ecological Alternatives for Crop Protection Using Coriandrum sativum Essential Oil. Molecules, 24.

Chitprasert, 2014, Holy basil (ocimum sanctum linn.) Essential oil delivery to swine gastrointestinal tract using gelatin microcapsules coated with aluminum carboxymethyl cellulose and beeswax, J. Agric. Food Chem., 62, 12641, 10.1021/jf5019438

Badea, M.L., Iconaru, S.L., Groza, A., Chifiriuc, M.C., Beuran, M., Predoi, D., Badea, M.L., Iconaru, S.L., Groza, A., and Chifiriuc, M.C. (2019). Peppermint Essential Oil-Doped Hydroxyapatite Nanoparticles with Antimicrobial Properties. Molecules, 24.

Lardry, 2007, Les autres indications des huiles essentielles, Kinésithérapie Rev., 7, 35

Friedman, 2017, Chemistry, Antimicrobial Mechanisms, and Antibiotic Activities of Cinnamaldehyde against Pathogenic Bacteria in Animal Feeds and Human Foods, J. Agric. Food Chem., 65, 10406, 10.1021/acs.jafc.7b04344

Boh, 2006, Microencapsulation of essential oils and phase change materials for applications in textile products, Indian J. Fibre Text. Res., 31, 72

Kerdudo, A. (March 2015). Optimisation de la conservation des cosmetiques: Impact de la formulation, recherche de nouveaux conservateurs naturels, encapsulation. [Ph.D. Thesis, University of Nice].

Madene, 2006, Flavour encapsulation and controlled release—A review, Int. J. Food Sci. Technol., 41, 1, 10.1111/j.1365-2621.2005.00980.x

Casanova, 2016, Encapsulation of cosmetic active ingredients for topical application—A review, J. Microencapsul., 33, 1, 10.3109/02652048.2015.1115900

Lopez, 2012, Development of formulations to improve the controlled-release of linalool to be applied as an insecticide, J. Agric. Food Chem., 60, 1187, 10.1021/jf204242x

Nuruzzaman, 2016, Nanoencapsulation, Nano-guard for Pesticides: A New Window for Safe Application, J. Agric. Food Chem., 64, 1447, 10.1021/acs.jafc.5b05214

Dekker, M. (1999). Controlled-Release Delivery Systems for Pesticides, CRC Press.

Kauss, 2019, Micro- and nano-formulations for bioprinting and additive manufacturing, Drug Discov. Today, 24, 163, 10.1016/j.drudis.2018.10.013

Chang, 2013, Physicochemical properties and antimicrobial efficacy of carvacrol nanoemulsions formed by spontaneous emulsification, J. Agric. Food Chem., 61, 8906, 10.1021/jf402147p

Annunziata, 2011, Nanoencapsulation of essential oils to enhance their antimicrobial activity in foods, LWT-Food Sci. Technol., 44, 1908, 10.1016/j.lwt.2011.03.003

Banerjee, 2013, Influence of process variables on essential oil microcapsule properties by carbohydrate polymer-protein blends, Carbohydr. Polym., 93, 691, 10.1016/j.carbpol.2013.01.028

Jobdeedamrong, 2018, Encapsulation and Release of Essential Oils in Functional Silica Nanocontainers, Langmuir, 34, 13235, 10.1021/acs.langmuir.8b01652

Sartoratto, 2017, Encapsulated thyme (Thymus vulgaris) essential oil used as a natural preservative in bakery product, Food Res. Int., 96, 154, 10.1016/j.foodres.2017.03.006

Lamprecht, 2001, Influences of process parameters on preparation of microparticle used as a carrier system for Ω-3 unsaturated fatty acid ethyl esters used in supplementary nutrition, J. Microencapsul., 18, 347, 10.1080/02652040010000433

Castro, 2014, Insecticidal activity of microencapsulated Schinus molle essential oil, Ind. Crops Prod., 53, 209, 10.1016/j.indcrop.2013.12.038

Pudziuvelyte, L., Marksa, M., Jakstas, V., Ivanauskas, L., Kopustinskiene, D.M., Bernatoniene, J., Pudziuvelyte, L., Marksa, M., Jakstas, V., and Ivanauskas, L. (2019). Microencapsulation of Elsholtzia ciliata Herb Ethanolic Extract by Spray-Drying: Impact of Resistant-Maltodextrin Complemented with Sodium Caseinate, Skim Milk, and Beta-Cyclodextrin on the Quality of Spray-Dried Powders. Molecules, 24.

Duarte, 2013, Inulin potential for encapsulation and controlled delivery of Oregano essential oil, Food Hydrocoll., 33, 199, 10.1016/j.foodhyd.2013.03.009

Paula, 2014, Alginate/cashew gum nanoparticles for essential oil encapsulation, Colloids Surf. B Biointerfaces, 113, 146, 10.1016/j.colsurfb.2013.08.038

Dima, 2016, The kinetics of the swelling process and the release mechanisms of Coriandrum sativum L. essential oil from chitosan/alginate/inulin microcapsules, Food Chem., 195, 39, 10.1016/j.foodchem.2015.05.044

Fernandes, 2014, Gum arabic/starch/maltodextrin/inulin as wall materials on the microencapsulation of rosemary essential oil, Carbohydr. Polym., 101, 524, 10.1016/j.carbpol.2013.09.083

Venskutonis, 2007, Flavor retention of peppermint (Mentha piperita L.) essential oil spray-dried in modified starches during encapsulation and storage, J. Agric. Food Chem., 55, 3027, 10.1021/jf062508c

Herculano, 2015, Physicochemical and antimicrobial properties of nanoencapsulated Eucalyptus staigeriana essential oil, LWT-Food Sci. Technol., 61, 484, 10.1016/j.lwt.2014.12.001

Kfoury, 2015, Promising applications of cyclodextrins in food: Improvement of essential oils retention, controlled release and antiradical activity, Carbohydr. Polym., 131, 264, 10.1016/j.carbpol.2015.06.014

Shrestha, 2017, Encapsulation of tea tree oil by amorphous beta-cyclodextrin powder, Food Chem., 221, 1474, 10.1016/j.foodchem.2016.11.003

Barbieri, 2018, Effect of cyclodextrins and Mexican oregano (Lippia graveolens Kunth) chemotypes on the microencapsulation of essential oil, Ind. Crops Prod., 121, 114, 10.1016/j.indcrop.2018.04.081

Oliveira, 2015, Encapsulation of carvacrol, a monoterpene present in the essential oil of oregano, with β-cyclodextrin, improves the pharmacological response on cancer pain experimental protocols, Chem. Biol. Interact., 227, 69, 10.1016/j.cbi.2014.12.020

Manolikar, 2003, Study of solubility of isoproturon by its complexation with β-cyclodextrin, Chemosphere, 51, 811, 10.1016/S0045-6535(03)00099-7

Santos, 2015, Characterization of carvacrol beta-cyclodextrin inclusion complexes as delivery systems for antibacterial and antioxidant applications, LWT-Food Sci. Technol., 60, 583, 10.1016/j.lwt.2014.08.046

Tao, 2014, Synthesis and characterization of β-cyclodextrin inclusion complexes of thymol and thyme oil for antimicrobial delivery applications, LWT-Food Sci. Technol., 59, 247, 10.1016/j.lwt.2014.05.037

Peydecastaing, 2017, β-Cyclodextrin inclusion complexes containing clove (Eugenia caryophyllata) and Mexican oregano (Lippia berlandieri) essential oils: Preparation, physicochemical and antimicrobial characterization, Food Packag. Shelf Life, 14, 96, 10.1016/j.fpsl.2017.09.002

Kfoury, 2016, Release studies of trans-anethole from β-cyclodextrin solid inclusion complexes by Multiple Headspace Extraction, Carbohydr. Polym., 151, 1245, 10.1016/j.carbpol.2016.06.079

Dou, 2018, An inclusion complex of thymol into β-cyclodextrin and its antifungal activity against Geotrichum citri-aurantii, Postharvest Biol. Technol., 138, 31, 10.1016/j.postharvbio.2017.12.011

Mangolim, 2014, Curcumin-β-cyclodextrin inclusion complex: Stability, solubility, characterisation by FT-IR, FT-Raman, X-ray diffraction and photoacoustic spectroscopy, and food application, Food Chem., 153, 361, 10.1016/j.foodchem.2013.12.067

Rakmai, 2017, Physico-chemical characterization and evaluation of bio-efficacies of black pepper essential oil encapsulated in hydroxypropyl-beta-cyclodextrin, Food Hydrocoll., 65, 157, 10.1016/j.foodhyd.2016.11.014

Liang, 2012, Effects of cyclodextrins on the antimicrobial activity of plant-derived essential oil compounds, Food Chem., 135, 1020, 10.1016/j.foodchem.2012.05.054

Karathanos, 2007, Study of the solubility, antioxidant activity and structure of inclusion complex of vanillin with β-cyclodextrin, Food Chem., 101, 652, 10.1016/j.foodchem.2006.01.053

Buera, 2010, Encapsulation of cinnamon and thyme essential oils components (cinnamaldehyde and thymol) in β-cyclodextrin: Effect of interactions with water on complex stability, J. Food Eng., 99, 70, 10.1016/j.jfoodeng.2010.01.039

Maraschin, 2018, Factors affecting the entrapment efficiency of β-cyclodextrins and their effects on the formation of inclusion complexes containing essential oils, Food Hydrocoll., 77, 509, 10.1016/j.foodhyd.2017.10.029

Gong, 2016, An inclusion complex of eugenol into β-cyclodextrin: Preparation, and physicochemical and antifungal characterization, Food Chem., 196, 324, 10.1016/j.foodchem.2015.09.052

Noppakundilograt, 2015, Encapsulated eucalyptus oil in ionically cross-linked alginate microcapsules and its controlled release, Carbohydr. Polym., 131, 23, 10.1016/j.carbpol.2015.05.054

Esmaeili, 2015, In vitro release and biological activities of Carum copticum essential oil (CEO) loaded chitosan nanoparticles, Int. J. Biol. Macromol., 81, 283, 10.1016/j.ijbiomac.2015.08.010

Mohammadi, 2015, Nanoencapsulation of Zataria multiflora essential oil preparation and characterization with enhanced antifungal activity for controlling Botrytis cinerea, the causal agent of gray mould disease, Innov. Food Sci. Emerg. Technol., 28, 73, 10.1016/j.ifset.2014.12.011

Feyzioglu, 2016, Development of chitosan nanoparticles loaded with summer savory (Satureja hortensis L.) essential oil for antimicrobial and antioxidant delivery applications, LWT-Food Sci. Technol., 70, 104, 10.1016/j.lwt.2016.02.037

Hosseini, 2013, Incorporation of essential oil in alginate microparticles by multiple emulsion/ionic gelation process, Int. J. Biol. Macromol., 62, 582, 10.1016/j.ijbiomac.2013.09.054

Iannitelli, 2011, Potential antibacterial activity of carvacrol-loaded poly(dl-lactide-co-glycolide) (PLGA) nanoparticles against microbial biofilm, Int. J. Mol. Sci., 12, 5039, 10.3390/ijms12085039

Asprea, 2017, Thyme essential oil loaded in nanocochleates: Encapsulation efficiency, in vitro release study and antioxidant activity, LWT-Food Sci. Technol., 77, 497, 10.1016/j.lwt.2016.12.006

Righeschi, 2014, Strategy to provide a useful solution to effective delivery of dihydroartemisinin: Development, characterization and in vitro studies of liposomal formulations, Colloids Surf. B Biointerfaces, 116, 121, 10.1016/j.colsurfb.2013.12.019

Liolios, 2009, Liposomal incorporation of carvacrol and thymol isolated from the essential oil of Origanum dictamnus L. and in vitro antimicrobial activity, Food Chem., 112, 77, 10.1016/j.foodchem.2008.05.060

Riquelme, 2017, Active films based on alginate containing lemongrass essential oil encapsulated: Effect of process and storage conditions, Food Bioprod. Process., 104, 94, 10.1016/j.fbp.2017.05.005

Higueras, 2014, Antimicrobial packaging of chicken fillets based on the release of carvacrol from chitosan/cyclodextrin films, Int. J. Food Microbiol., 188, 53, 10.1016/j.ijfoodmicro.2014.07.018

Ramos, M., Jiménez, A., and Garrigós, M.C. (2016). Carvacrol-Based Films. Antimicrob. Food Packag., 329–338.

Zhaveh, 2015, Encapsulation of Cuminum cyminum essential oils in chitosan-caffeic acid nanogel with enhanced antimicrobial activity against Aspergillus flavus, Ind. Crops Prod., 69, 251, 10.1016/j.indcrop.2015.02.028

Beyki, 2014, Encapsulation of Mentha piperita essential oils in chitosan-cinnamic acid nanogel with enhanced antimicrobial activity against Aspergillus flavus, Ind. Crops Prod., 54, 310, 10.1016/j.indcrop.2014.01.033

Chen, 2003, O/W emulsification for the self-aggregation and nanoparticle formation of linoleic acid-modified chitosan in the aqueous system, J. Agric. Food Chem., 51, 3135, 10.1021/jf0208482

Wen, 2010, Preparation of liposomes entrapping essential oil from Atractylodes macrocephala Koidz by modified RESS technique, Chem. Eng. Res. Des., 88, 1102, 10.1016/j.cherd.2010.01.020

Liu, 2017, Morphology and Characteristics of Starch Nanoparticles Self-Assembled via a Rapid Ultrasonication Method for Peppermint Oil Encapsulation, J. Agric. Food Chem., 65, 8363, 10.1021/acs.jafc.7b02938

Kavetsou, 2019, Encapsulation of Mentha pulegium Essential Oil in Yeast Cell Microcarriers: An Approach to Environmentally Friendly Pesticides, J. Agric. Food Chem., 67, 4746, 10.1021/acs.jafc.8b05149

Durenne, 2018, A laboratory high-throughput glass chamber using dynamic headspace TD-GC/MS method for the analysis of whole Brassica napus L. plantlet volatiles under cadmium-related abiotic stress, Phytochem. Anal., 29, 463, 10.1002/pca.2750

Hosseini, 2013, Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: Preparation, characterization and in vitro release study, Carbohydr. Polym., 95, 50, 10.1016/j.carbpol.2013.02.031

Scalerandi, 2018, Understanding Synergistic Toxicity of Terpenes as Insecticides: Contribution of Metabolic Detoxification in Musca domestica, Front. Plant Sci., 9, 1579, 10.3389/fpls.2018.01579