SAGE Publications

Công bố khoa học tiêu biểu

* Dữ liệu chỉ mang tính chất tham khảo

Sắp xếp:  
Involvement of T-Lymphocytes in Periodontal Disease and in Direct and Indirect Induction of Bone Resorption
SAGE Publications - Tập 12 Số 2 - Trang 125-135 - 2001
Martin A. Taubman, Toshihisa Kawai

Periodontal disease is a peripheral infection involving species of Gram-negative organisms. T-lymphocytes can be found in the dense inflammatory infiltrate in this disease. CD4+ and CD8+ T-cells are present in periodontal lesions, as are memory/activated T-lymphocytes. In addition, Th1- and Th2-type T-lymphocytes and their associated cytokines with a subtle polarization to Th 1 may be present. Th1-type T-cells up-regulate the production of pro-inflammatory cytokines IL-1 and TNF-α, which can induce bone resorption indirectly by promoting differentiation of osteoclast precursors and subsequently by activating osteoclasts. Such osteoclast differentiation is dependent on stimulation of osteoprotegerin ligand (OPG-L) production by osteoblastic cells. By contrast, activated T-cells, by virtue of direct production and expression of OPG-L, can directly promote osteoclast differentiation. OPG-L appears to be predominantly expressed on Th1-type cells. The direct and indirect T-cell involvement in periodontal bone resorption appears to be dependent on the degree of Th 1-type T-cell recruitment into inflamed gingival tissues. This T-cell recruitment is regulated by adhesion molecules and chemokines/chemokine receptors. The adhesion molecules involved include a4 and a6 integrins, LFA-1, and ICAM-1. The Th1-type T-cells preferentially express CCR5 and CXCR3, which are found prominently in diseased gingivae. By contrast, little CCR4, expressed by Th2-type T-cells, can be detected. Also, the chemokine ligands RANTES, MIP1-α (both CCR5), and IP-10 (CXCR3 ligand) were elevated in inflamed periodontal tissues. The T-cell features in diseased periodontal tissues can be compared with those in rheumatoid arthritis, wherein bone resorption often attributed to Th1-type T-cell involvement has also been demonstrated.

Neurobiological Mechanisms Involved in Sleep Bruxism
SAGE Publications - Tập 14 Số 1 - Trang 30-46 - 2003
Gilles Lavigne, Takafumi Kato, Arlette Kolta, Barry J. Sessle

Sleep bruxism (SB) is reported by 8% of the adult population and is mainly associated with rhythmic masticatory muscle activity (RMMA) characterized by repetitive jaw muscle contractions (3 bursts or more at a frequency of 1 Hz). The consequences of SB may include tooth destruction, jaw pain, headaches, or the limitation of mandibular movement, as well as tooth-grinding sounds that disrupt the sleep of bed partners. SB is probably an extreme manifestation of a masticatory muscle activity occurring during the sleep of most normal subjects, since RMMA is observed in 60% of normal sleepers in the absence of grinding sounds. The pathophysiology of SB is becoming clearer, and there is an abundance of evidence outlining the neurophysiology and neurochemistry of rhythmic jaw movements (RJM) in relation to chewing, swallowing, and breathing. The sleep literature provides much evidence describing the mechanisms involved in the reduction of muscle tone, from sleep onset to the atonia that characterizes rapid eye movement (REM) sleep. Several brainstem structures ( e.g., reticular pontis oralis, pontis caudalis, parvocellularis) and neurochemicals ( e.g., serotonin, dopamine, gamma aminobutyric acid [GABA], noradrenaline) are involved in both the genesis of RJM and the modulation of muscle tone during sleep. It remains unknown why a high percentage of normal subjects present RMMA during sleep and why this activity is three times more frequent and higher in amplitude in SB patients. It is also unclear why RMMA during sleep is characterized by co-activation of both jaw-opening and jaw-closing muscles instead of the alternating jaw-opening and jaw-closing muscle activity pattern typical of chewing. The final section of this review proposes that RMMA during sleep has a role in lubricating the upper alimentary tract and increasing airway patency. The review concludes with an outline of questions for future research.

Acute and Chronic Craniofacial Pain: Brainstem Mechanisms of Nociceptive Transmission and Neuroplasticity, and Their Clinical Correlates
SAGE Publications - Tập 11 Số 1 - Trang 57-91 - 2000
Barry J. Sessle

This paper reviews the recent advances in knowledge of brainstem mechanisms related to craniofacial pain. It also draws attention to their clinical implications, and concludes with a brief overview and suggestions for future research directions. It first describes the general organizational features of the trigeminal brainstem sensory nuclear complex (VBSNC), including its input and output properties and intrinsic characteristics that are commensurate with its strategic role as the major brainstem relay of many types of somatosensory information derived from the face and mouth. The VBSNC plays a crucial role in craniofacial nociceptive transmission, as evidenced by clinical, behavioral, morphological, and electrophysiological data that have been especially derived from studies of the relay of cutaneous nociceptive afferent inputs through the subnucleus caudalis of the VBSNC. The recent literature, however, indicates that some fundamental differences exist in the processing of cutaneous vs. other craniofacial nociceptive inputs to the VBSNC, and that rostral components of the VBSNC may also play important roles in some of these processes. Modulatory mechanisms are also highlighted, including the neuro-chemical substrate by which nociceptive transmission in the VBSNC can be modulated. In addition, the long-term consequences of peripheral injury and inflammation and, in particular, the neuroplastic changes that can be induced in the VBSNC are emphasized in view of the likely role that central sensitization, as well as peripheral sensitization, can play in acute and chronic pain. The recent findings also provide new insights into craniofacial pain behavior and are particularly relevant to many approaches currently in use for the management of pain and to the development of new diagnostic and therapeutic procedures aimed at manipulating peripheral inputs and central processes underlying nociceptive transmission and its control within the VBSNC.

Oral Sequelae of Head and Neck Radiotherapy
SAGE Publications - Tập 14 Số 3 - Trang 199-212 - 2003
Arjan Vissink, J. Jansma, Fred K. L. Spijkervet, F.R. Burlage, Robert P. Coppes

In addition to anti-tumor effects, ionizing radiation causes damage in normal tissues located in the radiation portals. Oral complications of radiotherapy in the head and neck region are the result of the deleterious effects of radiation on, e.g., salivary glands, oral mucosa, bone, dentition, masticatory musculature, and temporomandibular joints. The clinical consequences of radiotherapy include mucositis, hyposalivation, taste loss, osteoradionecrosis, radiation caries, and trismus. Mucositis and taste loss are reversible consequences that usually subside early post-irradiation, while hyposalivation is normally irreversible. Furthermore, the risk of developing radiation caries and osteoradionecrosis is a life-long threat. All these consequences form a heavy burden for the patients and have a tremendous impact on their quality of life during and after radiotherapy. In this review, the radiation-induced changes in healthy oral tissues and the resulting clinical consequences are discussed.

Relation of Dental Composite Formulations To Their Degradation and the Release of Hydrolyzed Polymeric-Resin-Derived Products
SAGE Publications - Tập 12 Số 2 - Trang 136-151 - 2001
J. Paul Santerre, Leylanaz Shajii, Beatrice W Leung

This article reviews the principal modes of dental composite material degradation and relates them to the specific components of the composites themselves. Particular emphasis is placed on the selection of the monomer resins, the filler content, and the degree of monomer conversion after the clinical materials are cured. Loss of mechanical function and leaching of components from the composites are briefly described, while a more detailed description is provided of studies that have considered the chemical breakdown of materials by agents that are present in the oral cavity, or model the latter. Specific attention will be given to the hydrolysis process of monomer and composite components, i.e., the scission of condensation-type bonds (esters, ethers, amides, etc.) that make up the monomer resins, following reaction of the resins with water and salivary enzymes. A synopsis of enzyme types and their sources is outlined, along with a description of the work that supports their ability to attack and degrade specific types of monomer systems. The methods for the study of biodegradation effects are compared in terms of sensitivity and the information that they provide. The impact of biodegradation on the ultimate biocompatibility of current materials is discussed from the perspective of what is known to date and what remains to be studied. The findings of the past decade clearly indicate that there are many reasons to probe the issue of biochemical stability of composite resins in the oral cavity. The challenge will now be to have both industry and government agencies take a pro-active approach to fund research in this area, with the expectation that these studies will lead to a more concise definition of biocompatibility issues related to dental composites. In addition, the acquired information from such studies will generate the development of alternate polymeric chemistries and composite formulations that will require further investigation for use as the next generation of restorative materials with enhanced biostability.

Interaction of Plant Polyphenols with Salivary Proteins
SAGE Publications - Tập 13 Số 2 - Trang 184-196 - 2002
Anders Bennick

Tannins are polyphenols that occur widespread in plant-based food. They are considered to be part of the plant defense system against environmental stressors. Tannins have a number of effects on animals, including growth-rate depression and inhibition of digestive enzymes. Tannins also have an effect on humans: They are, for example, the cause of byssinosis, a condition that is due to exposure to airborne tannin. Their biological effect is related to the great efficiency by which tannins precipitate proteins, an interaction that occurs by hydrophobic forces and hydrogen bonding. Two groups of salivary proteins, proline-rich proteins and histatins, are highly effective precipitators of tannin, and there is evidence that at least proline-rich proteins act as a first line of defense against tannins, perhaps by precipitating tannins in food and preventing their absorption from the alimentary canal. Proline plays an important role in the interaction of proline-rich proteins with tannins. In contrast, it is primarily basic residues that are responsible for the binding of histatins to tannin. The high concentration of tannin-binding proteins in human saliva may be related to the fruit and vegetable diet of human ancestors.

Oral Malodor
SAGE Publications - Tập 1 Số 4 - Trang 247-259 - 1990
I. Kleinberg, G. Westbay
Hydroxyapatite Binding Domains in Salivary Proteins
SAGE Publications - Tập 4 Số 3 - Trang 371-378 - 1993
Mats Johnsson, MICHAEL J. LEVINE, George H. Nancollas
Salivary α-Amylase: Role in Dental Plaque and Caries Formation
SAGE Publications - Tập 4 Số 3 - Trang 301-307 - 1993
Frank A. Scannapieco, Guillermo Torres, Michael J. Levine

Salivary α-amylase, one of the most plentiful components in human saliva, has at least three distinct biological functions. The enzymatic activity of a-amylase undoubtedly plays a role in carbohydrate digestion. Amylase in solution binds with high affinity to a selected group of oral streptococci, a function that may contribute to bacterial clearance and nutrition. The fact that a-amylase is also found in acquired enamel pellicle suggests a role in the adhesion of a-amylase-binding bacteria. All of these biological activities seem to depend on an intact enzyme conformation. Binding of a-amylase to bacteria and teeth may have important implications for dental plaque and caries formation. a-Amylase bound to bacteria in plaque may facilitate dietary starch hydrolysis to provide additional glucose for metabolism by plaque microorganisms in close proximity to the tooth surface. The resulting lactic acid produced may be added to the pool of acid in plaque to contribute to tooth demineralization.

Saliva-Bacterium Interactions in Oral Microbial Ecology
SAGE Publications - Tập 5 Số 3 - Trang 203-248 - 1994
Frank A. Scannapieco

Saliva is thought to have a significant impact on the colonization of microorganisms in the oral cavity. Salivary components may participate in this process by one of four general mechanisms: binding to microorganisms to facilitate their clearance from the oral cavity, serving as receptors in oral pellicles for microbial adhesion to host surfaces, inhibiting microbial growth or mediating microbial killing, and serving as microbial nutritional substrates. This article reviews information pertinent to the molecular interaction of salivary components with bacteria (primarily the oral streptococci and Actinomyces) and explores the implications of these interactions for oral bacterial colonization and dental plaque formation. Knowledge of the molecular mechanisms controlling bacterial colonization of the oral cavity may suggest methods to prevent not only dental plaque formation but also serious medical infections that may follow microbial colonization of the oral cavity.

Tổng số: 19   
  • 1
  • 2