Dental Fluorosis: Chemistry and Biology

SAGE Publications - Tập 13 Số 2 - Trang 155-170 - 2002
Takaaki Aoba1,2, Newell W. Johnson2,2
1The Nippon Dental University, Department of Pathology, 1-9-20 Fujimi, Chiyoda-ku, Tokyo 102, Japan;
2The Royal Dental College, Faculty of Health Sciences, Aarhus University, Vennelyst Boulevard, 8000 Aarhus C, Denmark;

Tóm tắt

This review aims at discussing the pathogenesis of enamel fluorosis in relation to a putative linkage among ameloblastic activities, secreted enamel matrix proteins and multiple proteases, growing enamel crystals, and fluid composition, including calcium and fluoride ions. Fluoride is the most important caries-preventive agent in dentistry. In the last two decades, increasing fluoride exposure in various forms and vehicles is most likely the explanation for an increase in the prevalence of mild-to-moderate forms of dental fluorosis in many communities, not the least in those in which controlled water fluoridation has been established. The effects of fluoride on enamel formation causing dental fluorosis in man are cumulative, rather than requiring a specific threshold dose, depending on the total fluoride intake from all sources and the duration of fluoride exposure. Enamel mineralization is highly sensitive to free fluoride ions, which uniquely promote the hydrolysis of acidic precursors such as octacalcium phosphate and precipitation of fluoridated apatite crystals. Once fluoride is incorporated into enamel crystals, the ion likely affects the subsequent mineralization process by reducing the solubility of the mineral and thereby modulating the ionic composition in the fluid surrounding the mineral. In the light of evidence obtained in human and animal studies, it is now most likely that enamel hypomineralization in fluorotic teeth is due predominantly to the aberrant effects of excess fluoride on the rates at which matrix proteins break down and/or the rates at which the by-products from this degradation are withdrawn from the maturing enamel. Any interference with enamel matrix removal could yield retarding effects on the accompanying crystal growth through the maturation stages, resulting in different magnitudes of enamel porosity at the time of tooth eruption. Currently, there is no direct proof that fluoride at micromolar levels affects proliferation and differentiation of enamel organ cells. Fluoride does not seem to affect the production and secretion of enamel matrix proteins and proteases within the dose range causing dental fluorosis in man. Most likely, the fluoride uptake interferes, indirectly, with the protease activities by decreasing free Ca2+ concentration in the mineralizing milieu. The Ca2+-mediated regulation of protease activities is consistent with the in situ observations that (a) enzymatic cleavages of the amelogenins take place only at slow rates through the secretory phase with the limited calcium transport and that, (b) under normal amelogenesis, the amelogenin degradation appears to be accelerated during the transitional and early maturation stages with the increased calcium transport. Since the predominant cariostatic effect of fluoride is not due to its uptake by the enamel during tooth development, it is possible to obtain extensive caries reduction without a concomitant risk of dental fluorosis. Further efforts and research are needed to settle the currently uncertain issues, e.g., the incidence, prevalence, and causes of dental or skeletal fluorosis in relation to all sources of fluoride and the appropriate dose levels and timing of fluoride exposure for prevention and control of dental fluorosis and caries.

Từ khóa


Tài liệu tham khảo

10.1007/BF02556714

10.1159/000260617

10.1159/000260743

10.1177/08959374940080011201

10.1002/(SICI)1097-0185(199606)245:2<208::AID-AR8>3.0.CO;2-S

10.1177/10454411970080020301

10.1007/BF02555250

10.1007/BF00296292

10.1007/BF02555230

10.1177/08959374870010021401

10.1177/00220345870660120501

10.1177/00220345890680070501

10.1177/00220345890680090901

Aoba T, Kawano K, Moreno EC (1990a). Molecular conformation of porcine amelogenins and its significance in protein-mineral interaction:1H-NMR photo-CIDNP study. J Biol Buccale 18:189–194.

10.1177/00220345900690060501

Aoba T, Shimoda S, Akita H, Holmberg C, Taubman MA (1991). Anti-peptide antibodies reactive with epitopic domains of porcine amelogenins at the C-terminus. Arch Oral Biol 37:249–255.

10.1007/BF00298503

10.1007/BF00296224

10.3109/03008209509016994

10.3109/03008209809017029

10.2330/joralbiosci1965.41.53

Baelum V, Manji F, Fejerskov O (1986). Posteruptive tooth age and severity of dental fluorosis in Kenya. Scand J Dent Res 94:405–410.

10.1111/j.1600-0528.1999.tb01992.x

10.1080/000163599428652

10.1177/10454411990100040101

10.1016/S0378-1119(96)00525-2

10.3109/03008209809023916

10.1177/00220345840630050601

10.1177/00220345820610031401

10.1177/00220345870660081501

10.1177/00220345950740070501

10.1111/j.1600-0722.1996.tb00104.x

10.1016/0003-9969(84)90011-6

10.1177/00220345940730040401

10.1016/0003-9969(94)00135-X

10.1177/08959374870010022201

10.1177/00220345000790021001

10.1016/S8756-3282(98)00058-1

Clarkson BH, Fejerskov O, Ekstrand J, Burt BA (1996). Rational use of fluorides in caries control. In: Fluoride in dentistry. Fejerskov O, Ekstrand J, Burt BA, editors. Copenhagen: Munksgaard, pp. 347-357.

10.1159/000261150

Crenshaw MA, Bawden JW (1984). Proteolytic activity in embryonic secretory enamel. In: Proceedings, tooth enamel IV. May 24-27, 1984, Odawara, Japan. Fearnhead RW, Suga S, editors. Amsterdam: Elsevier, pp. 109-113.

10.1177/00220345900690S138

Dean HT (1934). Classification of mottled enamel diagnosis. J Am Dent Assoc 21:1421–1426.

Dean HT (1942). The investigation of physiological effects by the epidemiologic methods. In: Fluorine and dental health. Moulton FR, editor. Washington: American Association for the Advancement of Science, pp. 23-31.

10.2307/4581707

10.1177/00220345860650101401

10.1111/j.1600-0528.1999.tb01990.x

10.1016/0003-9969(84)90171-7

10.1016/0003-9969(89)90117-9

10.1177/08959374890030022001

10.1177/00220345850640120701

Eastoe JE, Fejerskov O (1984). Composition of mature enamel proteins from fluorosed teeth. In: Proceedings, tooth enamel IV. May 24-27, 1984, Odawara, Japan. Fearnhead RW, Suga S, editors. Amsterdam: Elsevier, pp. 326-330.

10.1016/0003-9969(72)90122-7

10.1007/BF02405373

Ekstrand J (1996). Fluoride metabolism. In: Fluoride in dentistry. Fejerskov O, Ekstrand J, Burt BA, editors. Copenhagen: Munksgaard, pp. 55-68.

Elliott JC (1994). Structure and chemistry of the apatites and other calcium orthophosphates. In: Studies in inorganic chemistry. Vol. 18. Amsterdam: Elsevier.

10.1111/j.1752-7325.1991.tb02187.x

10.1111/j.1752-7325.1991.tb02223.x

10.1126/science.6623079

10.1111/j.1600-0528.1997.tb00894.x

Fejerskov O, Baelum V (1998). Changes in prevalence and incidence of the major oral diseases. In: Oral biology at the turn of the century. Truth, misconcepts and challenges. Guggenheim B, Shapiro H, editors. Zürich: Karger, pp. 1-9.

Fejerskov O, Johnson NW, Silverstone LM (1974). The ultrastructure of fluorosed human dental enamel. Scand J Dent Res 82:357–372.

10.1159/000260157

Fejerskov O, Thylstrup A, Larsen MJ (1977). Clinical and structural features and possible pathogenic mechanisms of dental fluorosis. Scand J Dent Res 85:510–534.

10.3109/00016358109162285

Fejerskov O, Manji F, Baelum V, Moller IJ (1988). Dental fluorosis. A handbook for health workers. Copenhagen: Munksgaard.

10.1177/00220345900690S135

Fejerskov O, Yanagisawa T, Tohda H, Larsen MJ, Josephsen KAJ, Mosha H (1991). Posteruptive changes in human dental fluorosis—a histological and ultrastructural study. Proc Finn Dent Soc 87:607–619.

10.1177/08959374940080010601

Fejerskov O, Richards A, DenBesten PK (1996). The effect of fluoride on tooth mineralization. In: Fluoride in dentistry. 2nd ed. Fejerskov O, Ekstrand J, Burt BA, editors. Copenhagen: Munksgaard, pp. 112-152.

10.1006/jsbi.1994.1011

10.1006/jsbi.1995.1029

10.1006/jsbi.1999.4130

10.1177/00220345980770080501

10.1034/j.1600-0722.2000.00735.x

Glass RL (1982). Secular changes in caries prevalence in two Massachusetts towns. J Dent Res 61(Spec Iss):1352–1355.

10.1159/000259575

10.3109/00016359009005883

Hodge HC, Smith FA (1965). Fluoride chemistry. Chapter 4. Simons JH, editor. Orlando, FL: Academic Press.

10.14219/jada.archive.1984.0268

10.1177/00220345000790011301

10.1111/j.1432-1033.1996.0611u.x

10.1016/0022-0248(92)90639-Z

10.1007/BF00301634

Ishii T, Suckling G (1986). The appearance of tooth enamel in children ingesting water with a high fluoride content for a limited period during early tooth development. J Dent Res 65:947–977.

Jackson RD, Kelly SA, Katz B, Brizendine E, Stookey GK (1999). Dental fluorosis in children residing in communities with different water fluoride levels: 33-month follow-up. Pediatric Dent 21:248–254.

10.1177/10454411920030010601

Josephsen K, Fejerskov O (1977). Ameloblast modulation in the maturation zone of the rat incisor enamel organ. A light and electron microscopy study. J Anat (Lond) 124:45–70.

10.1177/10454411900010040501

10.1177/002215549704500207

Kierdorf U, Kierdorf H, Sedlacek F, Fejerskov O (1996). Structural changes in fluorosed dental enamel of red deer (Cervus elaphus L) from a region with severe environmental pollution by fluorides. J Anat 188:183–195.

10.1177/00220345880670090301

Kleerekoper M, Mendlovic DB (1993). Sodium fluoride therapy of postmenopausal osteoporosis. Endocrine Rev 14:312–323.

10.1111/j.1834-7819.1967.tb04246.x

Larsen MJ (1975). Enamel solubility caries and erosions (thesis). Aarhus: Royal Dental College.

Larsen MJ, Fejerskov O, Josephsen K, Hammarström L (1977). The action of acute doses of fluoride on serum calcium level in relation to dental hard tissue formation in rats. Calcif Tissue Res 22:454–457.

10.1159/000260892

10.1159/000260957

10.1007/BF02556627

10.1359/jbmr.1998.13.11.1660

10.1159/000016592

10.1016/0003-9969(88)90036-2

10.1177/00220345860650050501

10.1159/000260960

10.1177/00220345900690S119

Marthaler TH (1990). Caries status in Europe and predictions of fluoride trends. Caries Res 24:387–396.

10.1007/s002040050576

10.1177/00220345890680020101

10.1007/BF01320911

10.1016/S0003-9969(00)00125-4

10.1177/002203457905800207011

Moradian-Oldak J, Leung W, Tan J, Fincham AG (1998). Effect of apatite crystals on the activity of amelogenin degrading enzymes in vitro. Calcif Tissue Int 39:131–140.

10.1177/08959374870010021301

10.1038/247064a0

Moreno EC, Kresak M, Hay DI (1978). Adsorption of two human parotid salivary macromolecules on hydroxy- fluorhydroxy- and fluorapatites. Arch Oral Biol 23:523–533.

Mura-Galelli MJ, Narusawa H, Shimada T, Iijima M, Aoba T (1992). Effects of fluoride on precipitation and hydrolysis of octacalcium phosphate in an experimental model simulating enamel mineralization during amelogenesis. Cells Mater 2:221–230.

10.1111/j.1600-0528.1983.tb01366.x

Nikiforuk G, Simmons NS (1965). Purification and properties of enamel protein. J Dent Res 44:229–248.

10.1177/00220345970760120701

10.1042/bj2560965

10.1111/j.1752-7325.1999.tb03275.x

10.1093/oxfordjournals.aje.a115448

Pindborg JJ (1982). Aetiology of developmental enamel defects not related to fluorosis. Int Dent J 32:123–134.

10.1007/BF00495426

10.1177/00220345900690S136

10.1177/00220345850640030601

10.1177/00220345860650120501

10.1177/08959374890030021301

10.1159/000261463

Robinson C (1997). Discussion for enamel fluorosis. Ciba Foundation Symp 205. Chichester: Wiley, p. 244.

Robinson C, Kirkham J, Brookes SJ, Bonass WA, Shore RC (1995). The chemistry of enamel development. Int J Dev Biol 39:145–152.

10.1111/j.1752-7325.1999.tb03276.x

Russell AL (1963). The differential diagnosis of fluoride and nonfluoride opacities. J Public Health Dent 21:143–146.

10.1177/00220345990780030601

10.1016/0003-9969(91)90090-H

Scheie AAa (1992). Dentifrices in the control of dental caries. In: Clinical and biological aspects of dentifrices. Embery G, Rølla G, editors. Oxford: Oxford University Press, pp. 29-40.

Schour I, Smith MC (1934). The histologic changes in the enamel and dentin of the rat incisor in acute and chronic experimental fluorosis. Univ AZ Tech Bull 52:6291.

Shimizu M, Fukae M (1983). Enamel proteins. In: Mechanisms of tooth enamel formation. Suga S, editor. Tokyo (Japan): Quintessence Publ., pp. 125-141.

10.1007/BF02546229

10.1177/10454411950060020701

10.1177/00220345980770020601

10.1016/0003-9969(90)90035-9

10.1177/10454411980090020101

10.1177/08959374870010020401

10.1002/ar.1092370212

10.1177/08959374960100020701

10.1016/0003-9969(86)90160-3

10.1016/0003-9969(88)90070-2

10.1177/08959374870010022601

Susa M (1999). Heterotrimeric G proteins as fluoride targets in bone. Int J Mol Med 3:115–126.

10.1007/BF02411236

10.1016/0003-9969(88)90183-5

10.1177/00220345880670030301

10.1007/BF00334549

10.1159/000260711

10.1177/10454411910020030101

Ten Cate JM, Featherstone JDB (1996). Physicochemical aspects of fluoride-enamel interactions. In: Fluoride in dentistry. Fejerskov O, Ekstrand J, Burt BA, editors. Copenhagen: Munksgaard, pp. 252-272.

10.1111/j.1600-0528.1978.tb01173.x

Thylstrup A, Fejerskov O (1979). A scanning electron microscopic and microradiographic study of pits in fluorosed human enamel. Scand J Dent Res 87:105–114.

10.1007/s004410050639

10.1007/BF02409467

von der Fehr F, Schwarz E (1994). Recording dental caries and health statistics in Europe. In: Textbook of clinical cariology. Thylstrup A, Fejerskov O, editors. Copenhagen: Munksgaard, pp. 193-208.

10.1016/0003-9969(74)90212-X

10.1038/256230a0

Whitford GM (1989). The metabolism and toxicity of fluoride. Basel, Switzerland: Karger.

10.1016/0003-9969(91)90099-G

Whitford GM (1997). Determinants and mechanisms of enamel fluorosis. Ciba Foundation Symp 205. Chichester: Wiley, pp. 226–241.

Wright JT (1997). The protein composition of normal and developmentally defective enamel. Ciba Foundation Symp 205. Chichester: Wiley, pp. 85–99.

10.1177/00220345960750120401

Yamazaki M, Sato K, Aoba T (2000). Mechanistic understanding of the maturation of developing enamel: plausible interactions among crystals, matrix proteins and proteases. Jpn J Oral Biol 43:60–71, 2001.

Yanagisawa T, Takuma S, Tohda H, Fejerskov O, Fearnhead RW (1989). High resolution electron microscopy of enamel crystals in cases of human dental fluorosis. J Electr Microsc 38:441–448.

Zeichner-David M, Diekwisch TGH, Fincham AG, Lau EC, MacDougall M, Moradian-Oldak J, et al. (1995). Control of ameloblast differentiation. Int J Dev Biol 39:69–72.