Agricultural and Biological Sciences (miscellaneous)Biochemistry, Genetics and Molecular Biology (miscellaneous)
Phân tích ảnh hưởng
Thông tin về tạp chí
The journal publishes topics across the life sciences. As long as the core subject lies within the biological sciences, some issues may also include content crossing into other areas such as the physical sciences, social sciences, biophysics, policy, economics etc. Issues generally sit within four broad areas (although many issues sit across these areas): Organismal, environmental and evolutionary biology Neuroscience and cognition Cellular, molecular and developmental biology Health and disease.
Colin E. Hughes, Ruth J. Eastwood, C. Donovan Bailey
Phylogenetic analyses of DNA sequences have prompted spectacular progress in assembling the Tree of Life. However, progress in constructing phylogenies among closely related species, at least for plants, has been less encouraging. We show that for plants, the rapid accumulation of DNA characters at higher taxonomic levels has not been matched by conventional sequence loci at the species level, leaving a lack of well-resolved gene trees that is hindering investigations of many fundamental questions in plant evolutionary biology. The most popular approach to address this problem has been to use low-copy nuclear genes as a source of DNA sequence data. However, this has had limited success because levels of variation among nuclear intron sequences across groups of closely related species are extremely variable and generally lower than conventionally used loci, and because no universally useful low-copy nuclear DNA sequence loci have been developed. This suggests that solutions will, for the most part, be lineage-specific, prompting a move away from ‘universal’ gene thinking for species-level phylogenetics. The benefits and limitations of alternative approaches to locate more variable nuclear loci are discussed and the potential of anonymous non-genic nuclear loci is highlighted. Given the virtually unlimited number of loci that can be generated using these new approaches, it is clear that effective screening will be critical for efficient selection of the most informative loci. Strategies for screening are outlined.
Complementary neurophysiological recordings in macaques and functional neuroimaging in humans show that the primary taste cortex in the rostral insula and adjoining frontal operculum provides separate and combined representations of the taste, temperature and texture (including viscosity and fat texture) of food in the mouth independently of hunger and thus of reward value and pleasantness. One synapse on, in the orbitofrontal cortex, these sensory inputs are for some neurons combined by learning with olfactory and visual inputs. Different neurons respond to different combinations, providing a rich representation of the sensory properties of food. In the orbitofrontal cortex, feeding to satiety with one food decreases the responses of these neurons to that food, but not to other foods, showing that sensory-specific satiety is computed in the primate (including human) orbitofrontal cortex. Consistently, activation of parts of the human orbitofrontal cortex correlates with subjective ratings of the pleasantness of the taste and smell of food. Cognitive factors, such as a word label presented with an odour, influence the pleasantness of the odour and the activation produced by the odour in the orbitofrontal cortex. These findings provide a basis for understanding how what is in the mouth is represented by independent information channels in the brain; how the information from these channels is combined; and how and where the reward and subjective affective value of food is represented and is influenced by satiety signals. Activation of these representations in the orbitofrontal cortex may provide the goal for eating, and understanding them helps to provide a basis for understanding appetite and its disorders.
‘Anticipatory affect’ refers to emotional states that people experience while anticipating significant outcomes. Historically, technical limitations have made it difficult to determine whether anticipatory affect influences subsequent choice. Recent advances in the spatio-temporal resolution of functional magnetic resonance imaging, however, now allow researchers to visualize changes in neural activity seconds before choice occurs. We review evidence that activation in specific brain circuits changes during anticipation of monetary incentives, that this activation correlates with affective experience and that activity in these circuits may influence subsequent choice. Specifically, an activation likelihood estimate meta-analysis of cued response studies indicates that nucleus accumbens (NAcc) activation increases during gain anticipation relative to loss anticipation, while anterior insula activation increases during both loss and gain anticipation. Additionally, anticipatory NAcc activation correlates with self-reported positive arousal, whereas anterior insula activation correlates with both self-reported negative and positive arousal. Finally, NAcc activation precedes the purchase of desirable products and choice of high-risk gambles, whereas anterior insula activation precedes the rejection of overpriced products and choice of low-risk gambles. Together, these findings support a neurally plausible framework for understanding how anticipatory affect can influence choice.
The placenta is arguably the most important organ of the body, but paradoxically the most poorly understood. During its transient existence, it performs actions that are later taken on by diverse separate organs, including the lungs, liver, gut, kidneys and endocrine glands. Its principal function is to supply the fetus, and in particular, the fetal brain, with oxygen and nutrients. The placenta is structurally adapted to achieve this, possessing a large surface area for exchange and a thin interhaemal membrane separating the maternal and fetal circulations. In addition, it adopts other strategies that are key to facilitating transfer, including remodelling of the maternal uterine arteries that supply the placenta to ensure optimal perfusion. Furthermore, placental hormones have profound effects on maternal metabolism, initially building up her energy reserves and then releasing these to support fetal growth in later pregnancy and lactation post-natally. Bipedalism has posed unique haemodynamic challenges to the placental circulation, as pressure applied to the vena cava by the pregnant uterus may compromise venous return to the heart. These challenges, along with the immune interactions involved in maternal arterial remodelling, may explain complications of pregnancy that are almost unique to the human, including pre-eclampsia. Such complications may represent a trade-off against the provision for a large fetal brain.
New evidence for the tissue types exploited by early hominids from carcasses possibly acquired through scavenging is derived from the larger mammal bone assemblages from FLK I, level 22 (
Zinjanthropus
floor), and FLKN levels 1 and 2 from Bed I, Olduvai Gorge, Tanzania. Published skeletal part profiles from the two archaeological sites are evaluated using (i) modern observations on the sequence by which carnivores consume carcass parts in order to assess the timing of hominid access to carcasses, and (ii) measurements of flesh and marrow yields to assess the tissue types sought and acquired. These results suggest that the maximization of marrow (fat) yields, not flesh (protein) yields, was the criterion shaping decisions about carcass processing. Because of evidence for density-dependent destruction of some flesh-bearing parts by scavengers of the hominid-butchered assemblages, however, it is uncertain whether carcass parts were transported and acquired by hominids in a largely defleshed condition. The results on tissue types acquired are combined with a discussion of predation risk, feeding competition and the equipment needs of carcass processing in an attempt to identify archaeological test implications of competing hypotheses for the socio-economic function of the earliest archaeological sites.
Gemma Chaters, P. Johnson, Sarah Cleaveland, Joseph Crispell, William A. de Glanville, T. Doherty, Louise Matthews, Sibylle Mohr, Obed M. Nyasebwa, Gianluigi Rossi, Liliana C. M. Salvador, Emmanuel S. Swai, Rowland R. Kao
Livestock movements are an important mechanism of infectious disease transmission. Where these are well recorded, network analysis tools have been used to successfully identify system properties, highlight vulnerabilities to transmission, and inform targeted surveillance and control. Here we highlight the main uses of network properties in understanding livestock disease epidemiology and discuss statistical approaches to infer network characteristics from biased or fragmented datasets. We use a ‘hurdle model’ approach that predicts (i) the probability of movement and (ii) the number of livestock moved to generate synthetic ‘complete’ networks of movements between administrative wards, exploiting routinely collected government movement permit data from northern Tanzania. We demonstrate that this model captures a significant amount of the observed variation. Combining the cattle movement network with a spatial between-ward contact layer, we create a multiplex, over which we simulated the spread of ‘fast’ (R0= 3) and ‘slow’ (R0= 1.5) pathogens, and assess the effects of random versus targeted disease control interventions (vaccination and movement ban). The targeted interventions substantially outperform those randomly implemented for both fast and slow pathogens. Our findings provide motivation to encourage routine collection and centralization of movement data to construct representative networks.This article is part of the theme issue ‘Modelling infectious disease outbreaks in humans, animals and plants: epidemic forecasting and control’. This theme issue is linked with the earlier issue ‘Modelling infectious disease outbreaks in humans, animals and plants: approaches and important themes’.
The current paper examines the functional contributions of the amygdala and ventromedial prefrontal cortex (vmPFC) and the evidence that the functioning of these systems is compromised in individuals with psychopathy. The amygdala is critical for the formation of stimulus–reinforcement associations, both punishment and reward based, and the processing of emotional expressions. vmPFC is critical for the representation of reinforcement expectancies and, owing to this, decision making. Neuropsychological and neuroimaging data from individuals with psychopathy are examined. It is concluded that these critical functions of the amygdala and vmPFC, and their interaction, are compromised in individuals with the disorder. It is argued that these impairments lead to the development of psychopathy.
Plants with the C4photosynthetic pathway dominate today's tropical savannahs and grasslands, and account for some 30% of global terrestrial carbon fixation. Their success stems from a physiological CO2-concentrating pump, which leads to high photosynthetic efficiency in warm climates and low atmospheric CO2concentrations. Remarkably, their dominance of tropical environments was achieved in only the past 10 million years (Myr), less than 3% of the time that terrestrial plants have existed on Earth. We critically review the proposal that declining atmospheric CO2triggered this tropical revolution via its effects on the photosynthetic efficiency of leaves. Our synthesis of the latest geological evidence from South Asia and North America suggests that this emphasis is misplaced. Instead, we find important roles for regional climate change and fire in South Asia, but no obvious environmental trigger for C4success in North America. CO2-starvation is implicated in the origins of C4plants 25–32 Myr ago, raising the possibility that the pathway evolved under more extreme atmospheric conditions experienced 10 times earlier. However, our geochemical analyses provide no evidence of the C4mechanism at this time, although possible ancestral components of the C4pathway are identified in ancient plant lineages. We suggest that future research must redress the substantial imbalance between experimental investigations and analyses of the geological record.
Fire and herbivory are the two consumers of above-ground biomass globally. They have contrasting impacts as they differ in terms of selectivity and temporal occurrence. Here, we integrate continental-scale data on fire and herbivory in Africa to explore (i) how environmental drivers constrain these two consumers and (ii) the degree to which each consumer affects the other. Environments conducive to mammalian herbivory are not necessarily the same as those conducive to fire, although their spheres of influence do overlap—especially in grassy ecosystems which are known for their frequent fires and abundance of large mammalian herbivores. Interactions between fire and herbivory can be competitive, facultative or antagonistic, and we explore this with reference to the potential for alternative ecosystem states. Although fire removes orders of magnitude more biomass than herbivory their methane emissions are very similar, and in the past, herbivores probably emitted more methane than fire. We contrast the type of herbivory and fire in different ecosystems to define ‘consumer-realms’.This article is part of the themed issue ‘Tropical grassy biomes: linking ecology, human use and conservation’.
Michael J. Redd, Lisa Cooper, Will Wood, Brian Stramer, Paul Martin
Tissue repair in embryos is rapid, efficient and perfect and does not leave a scar, an ability that is lost as development proceeds. Wheras adult wound keratinocytes crawl forwards over the exposed substratum to close the gap, a wound in the embryonic epidermis is closed by contraction of a rapidly assembled actin purse string. Blocking assembly of this cable in chick and mouse embryos, by drugs or by inactivation of the small GTPase Rho, severely hinders the re–epithelialization process. Live studies of epithelial repair in GFP–actin–expressingDrosophilaembryos reveal actin–rich filopodia associated with the cable, and although these protrusions from leading edge cells appear to play little role in epithelial migration, they are essential for final zippering of the wound edges together—inactivation of Cdc42 prevents their assembly and blocks the final adhesion step. This wound re–epithelialization machinery appears to recapitulate that used during naturally occurring morphogenetic episodes as typified byDrosophiladorsal closure. One key difference between embryonic and adult repair, which may explain why one heals perfectly and the other scars, is the presence of an inflammatory response at sites of adult repair where there is none in the embryo. Our studies of repair in the PU.1 null mouse, which is genetically incapable of raising an inflammatory response, show that inflammation may indeed be partly responsible for scarring, and our genetic studies of inflammation in zebrafish (Danio rerio) larvae suggest routes to identifying gene targets for therapeutically modulating the recruitment of inflammatory cells and thus improving adult healing.
Chỉ số ảnh hưởng
Total publication
223
Total citation
105,202
Avg. Citation
471.76
Impact Factor
0
H-index
145
H-index (5 years)
145
i10
222
i10-index (5 years)
8
Các tạp chí khác
Tạp chí Phụ Sản
Y Dược học cổ truyền Quân sự
Tạp chí Khoa học Xã hội và Nhân văn
Journal of International Economics and Management
Tạp chí Dinh dưỡng và Thực phẩm
Tạp chí Khoa học Đại học Đồng Tháp
Tạp chí Khoa học Tự nhiên Đại học Quốc gia Thành phố Hồ Chí Minh
Tạp chí Khoa học Kiểm sát
Tạp chí Khoa học Kiến trúc và Xây dựng
Tạp chí Nghiên cứu Khoa học và phát triển Trường Đại học Thành Đô