Molecular Biology of the Cell

  1059-1524

  1939-4586

  Mỹ

Cơ quản chủ quản:  American Society for Cell Biology , AMER SOC CELL BIOLOGY

Lĩnh vực:
Molecular BiologyCell Biology

Các bài báo tiêu biểu

Human Adipose Tissue Is a Source of Multipotent Stem Cells
Tập 13 Số 12 - Trang 4279-4295 - 2002
Patricia A. Zuk, Min Zhu, Peter Ashjian, Daniel A. De Ugarte, Jerry I. Huang, Hiroshi Mizuno, Zeni Alfonso, John K. Fraser, Prosper Benhaim, Marc H. Hedrick

Much of the work conducted on adult stem cells has focused on mesenchymal stem cells (MSCs) found within the bone marrow stroma. Adipose tissue, like bone marrow, is derived from the embryonic mesenchyme and contains a stroma that is easily isolated. Preliminary studies have recently identified a putative stem cell population within the adipose stromal compartment. This cell population, termed processed lipoaspirate (PLA) cells, can be isolated from human lipoaspirates and, like MSCs, differentiate toward the osteogenic, adipogenic, myogenic, and chondrogenic lineages. To confirm whether adipose tissue contains stem cells, the PLA population and multiple clonal isolates were analyzed using several molecular and biochemical approaches. PLA cells expressed multiple CD marker antigens similar to those observed on MSCs. Mesodermal lineage induction of PLA cells and clones resulted in the expression of multiple lineage-specific genes and proteins. Furthermore, biochemical analysis also confirmed lineage-specific activity. In addition to mesodermal capacity, PLA cells and clones differentiated into putative neurogenic cells, exhibiting a neuronal-like morphology and expressing several proteins consistent with the neuronal phenotype. Finally, PLA cells exhibited unique characteristics distinct from those seen in MSCs, including differences in CD marker profile and gene expression.

Xác định toàn diện các gen điều hòa chu kỳ tế bào của nấm men Saccharomyces cerevisiae bằng phương pháp lai ghép microarray Dịch bởi AI
Tập 9 Số 12 - Trang 3273-3297 - 1998
Paul T. Spellman, Gavin Sherlock, Michael Q. Zhang, Vishwanath R. Iyer, Kirk R. Anders, Michael B. Eisen, Patrick O. Brown, David Botstein, Bruce Futcher

Chúng tôi đã tìm cách tạo ra một danh mục đầy đủ các gen của nấm men có mức độ phiên mã thay đổi theo chu kỳ trong chu kỳ tế bào. Để đạt được mục tiêu này, chúng tôi sử dụng microarray DNA và các mẫu từ các nền nuôi cấy nấm men được đồng bộ hóa bằng ba phương pháp độc lập: dừng bằng yếu tố α, phương pháp tách lọc, và dừng đồng bộ một đột biến nhạy với nhiệt độ cdc15. Sử dụng các thuật toán chu kỳ và tương quan, chúng tôi đã xác định 800 gen đáp ứng tiêu chí tối thiểu khách quan về điều hòa chu kỳ tế bào. Trong các thí nghiệm riêng biệt, được thiết kế để kiểm tra tác dụng của việc kích thích cyclin G1 Cln3p hoặc cyclin loại B Clb2p, chúng tôi phát hiện ra rằng mức mRNA của hơn một nửa số gen này phản ứng với một hoặc cả hai loại cyclin này. Hơn nữa, chúng tôi đã phân tích tập hợp gen điều hòa chu kỳ tế bào của mình để tìm các phần tử khởi động đã biết và mới và cho thấy rằng nhiều phần tử được biết đến (hoặc biến thể của chúng) chứa thông tin dự đoán về điều hòa chu kỳ tế bào. Mô tả đầy đủ và tập dữ liệu hoàn chỉnh có sẵn tại http://cellcycle-www.stanford.edu

#Gen chu kỳ tế bào #Saccharomyces cerevisiae #microarray #điều hòa gen #Cln3p #Clb2p #yếu tố α #phương pháp tách lọc #đột biến cdc15 #yếu tố khởi động.
Genomic Expression Programs in the Response of Yeast Cells to Environmental Changes
Tập 11 Số 12 - Trang 4241-4257 - 2000
Audrey P. Gasch, Paul T. Spellman, Camilla M. Kao, Orna Carmel‐Harel, Michael B. Eisen, Gisela Storz, David Botstein, Patrick O. Brown

We explored genomic expression patterns in the yeastSaccharomyces cerevisiae responding to diverse environmental transitions. DNA microarrays were used to measure changes in transcript levels over time for almost every yeast gene, as cells responded to temperature shocks, hydrogen peroxide, the superoxide-generating drug menadione, the sulfhydryl-oxidizing agent diamide, the disulfide-reducing agent dithiothreitol, hyper- and hypo-osmotic shock, amino acid starvation, nitrogen source depletion, and progression into stationary phase. A large set of genes (∼ 900) showed a similar drastic response to almost all of these environmental changes. Additional features of the genomic responses were specialized for specific conditions. Promoter analysis and subsequent characterization of the responses of mutant strains implicated the transcription factors Yap1p, as well as Msn2p and Msn4p, in mediating specific features of the transcriptional response, while the identification of novel sequence elements provided clues to novel regulators. Physiological themes in the genomic responses to specific environmental stresses provided insights into the effects of those stresses on the cell.

Mammalian Transcription Factor ATF6 Is Synthesized as a Transmembrane Protein and Activated by Proteolysis in Response to Endoplasmic Reticulum Stress
Tập 10 Số 11 - Trang 3787-3799 - 1999
Kyosuke Haze, Hiderou Yoshida, Hideki Yanagi, Takashi Yura, Kazutoshi Mori

The unfolded protein response (UPR) controls the levels of molecular chaperones and enzymes involved in protein folding in the endoplasmic reticulum (ER). We recently isolated ATF6 as a candidate for mammalian UPR-specific transcription factor. We report here that ATF6 constitutively expressed as a 90-kDa protein (p90ATF6) is directly converted to a 50-kDa protein (p50ATF6) in ER-stressed cells. Furthermore, we showed that the most important consequence of this conversion was altered subcellular localization; p90ATF6 is embedded in the ER, whereas p50ATF6 is a nuclear protein. p90ATF6 is a type II transmembrane glycoprotein with a hydrophobic stretch in the middle of the molecule. Thus, the N-terminal half containing a basic leucine zipper motif is oriented facing the cytoplasm. Full-length ATF6 as well as its C-terminal deletion mutant carrying the transmembrane domain is localized in the ER when transfected. In contrast, mutant ATF6 representing the cytoplasmic region translocates into the nucleus and activates transcription of the endogenous GRP78/BiP gene. We propose that ER stress-induced proteolysis of membrane-bound p90ATF6 releases soluble p50ATF6, leading to induced transcription in the nucleus. Unlike yeast UPR, mammalian UPR appears to use a system similar to that reported for cholesterol homeostasis.

Nutrient-dependent mTORC1 Association with the ULK1–Atg13–FIP200 Complex Required for Autophagy
Tập 20 Số 7 - Trang 1981-1991 - 2009
Nao Hosokawa, Taichi Hara, Takeshi Kaizuka, Chieko Kishi, Akito Takamura, Yutaka Miura, Shun-ichiro Iemura, Tohru Natsume, Kenji Takehana, Naoyuki Yamada, Jun‐Lin Guan, Noriko Oshiro, Noboru Mizushima

Autophagy is an intracellular degradation system, by which cytoplasmic contents are degraded in lysosomes. Autophagy is dynamically induced by nutrient depletion to provide necessary amino acids within cells, thus helping them adapt to starvation. Although it has been suggested that mTOR is a major negative regulator of autophagy, how it controls autophagy has not yet been determined. Here, we report a novel mammalian autophagy factor, Atg13, which forms a stable ∼3-MDa protein complex with ULK1 and FIP200. Atg13 localizes on the autophagic isolation membrane and is essential for autophagosome formation. In contrast to yeast counterparts, formation of the ULK1–Atg13–FIP200 complex is not altered by nutrient conditions. Importantly, mTORC1 is incorporated into the ULK1–Atg13–FIP200 complex through ULK1 in a nutrient-dependent manner and mTOR phosphorylates ULK1 and Atg13. ULK1 is dephosphorylated by rapamycin treatment or starvation. These data suggest that mTORC1 suppresses autophagy through direct regulation of the ∼3-MDa ULK1–Atg13–FIP200 complex.

Identification of Genes Periodically Expressed in the Human Cell Cycle and Their Expression in Tumors
Tập 13 Số 6 - Trang 1977-2000 - 2002
Michael L. Whitfield, Gavin Sherlock, Alok J. Saldanha, John I. Murray, Catherine A. Ball, Karen E. Alexander, John C. Matese, Charles M. Perou, Myra M. Hurt, Patrick O. Brown, David Botstein

The genome-wide program of gene expression during the cell division cycle in a human cancer cell line (HeLa) was characterized using cDNA microarrays. Transcripts of >850 genes showed periodic variation during the cell cycle. Hierarchical clustering of the expression patterns revealed coexpressed groups of previously well-characterized genes involved in essential cell cycle processes such as DNA replication, chromosome segregation, and cell adhesion along with genes of uncharacterized function. Most of the genes whose expression had previously been reported to correlate with the proliferative state of tumors were found herein also to be periodically expressed during the HeLa cell cycle. However, some of the genes periodically expressed in the HeLa cell cycle do not have a consistent correlation with tumor proliferation. Cell cycle-regulated transcripts of genes involved in fundamental processes such as DNA replication and chromosome segregation seem to be more highly expressed in proliferative tumors simply because they contain more cycling cells. The data in this report provide a comprehensive catalog of cell cycle regulated genes that can serve as a starting point for functional discovery. The full dataset is available at http://genome-www.stanford.edu/Human-CellCycle/HeLa/ .

Remodeling of Yeast Genome Expression in Response to Environmental Changes
Tập 12 Số 2 - Trang 323-337 - 2001
Helen C. Causton, Bing Ren, Sang Seok Koh, Christopher Harbison, Elenita I. Kanin, Ezra G. Jennings, Tong Ihn Lee, Heather L. True, Eric S. Lander, Richard A. Young

We used genome-wide expression analysis to explore how gene expression in Saccharomyces cerevisiae is remodeled in response to various changes in extracellular environment, including changes in temperature, oxidation, nutrients, pH, and osmolarity. The results demonstrate that more than half of the genome is involved in various responses to environmental change and identify the global set of genes induced and repressed by each condition. These data implicate a substantial number of previously uncharacterized genes in these responses and reveal a signature common to environmental responses that involves ∼10% of yeast genes. The results of expression analysis with MSN2/MSN4 mutants support the model that the Msn2/Msn4 activators induce the common response to environmental change. These results provide a global description of the transcriptional response to environmental change and extend our understanding of the role of activators in effecting this response.

Evolutionarily Conserved and Nonconserved Cellular Localizations and Functions of Human SIRT Proteins
Tập 16 Số 10 - Trang 4623-4635 - 2005
Eriko Michishita, Jean Y. Park, Jenna M. Burneskis, J. Carl Barrett, Izumi Horikawa

Sir2 is a NAD+-dependent protein deacetylase that extends lifespan in yeast and worms. This study examines seven human proteins homologous to Sir2 (SIRT1 through SIRT7) for cellular localization, expression profiles, protein deacetylation activity, and effects on human cell lifespan. We found that: 1) three nuclear SIRT proteins (SIRT1, SIRT6, and SIRT7) show different subnuclear localizations: SIRT6 and SIRT7 are associated with heterochromatic regions and nucleoli, respectively, where yeast Sir2 functions; 2) SIRT3, SIRT4, and SIRT5 are localized in mitochondria, an organelle that links aging and energy metabolism; 3) cellular p53 is a major in vivo substrate of SIRT1 deacetylase, but not the other six SIRT proteins; 4) SIRT1, but not the other two nuclear SIRT proteins, shows an in vitro deacetylase activity on histone H4 and p53 peptides; and 5) overexpression of any one of the seven SIRT proteins does not extend cellular replicative lifespan in normal human fibroblasts or prostate epithelial cells. This study supports the notion that multiple human SIRT proteins have evolutionarily conserved and nonconserved functions at different cellular locations and reveals that the lifespan of normal human cells, in contrast to that of lower eukaryotes, cannot be manipulated by increased expression of a single SIRT protein.

The vascular endothelial growth factor (VEGF) isoforms: differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF.
Tập 4 Số 12 - Trang 1317-1326 - 1993
J E Park, G A Keller, Napoleone Ferrara

Vascular endothelial growth factor (VEGF)mRNA undergoes alternative splicing events that generate four different homodimeric isoforms, VEGF121, VEGF165, VEGF189, or VEGF206. VEGF121 is a nonheparin-binding acidic protein, which is freely diffusible. The longer forms, VEGF189 or VEGF206, are highly basic proteins tightly bound to extracellular heparin-containing proteoglycans. VEGF165 has intermediate properties. To determine the localization of VEGF isoforms, transfected human embryonic kidney CEN4 cells expressing VEGF165, VEGF189, or VEGF206 were stained by immunofluorescence with a specific monoclonal antibody. The staining was found in patches and streaks suggestive of extracellular matrix (ECM). VEGF165 was observed largely in Golgi apparatus-like structures. Immunogold labeling of cells expressing VEGF189 or VEGF206 revealed that the staining was localized to the subepithelial ECM. VEGF associated with the ECM was bioactive, because endothelial cells cultured on ECM derived from cells expressing VEGF189 or VEGF206 were markedly stimulated to proliferate. In addition, ECM-bound VEGF can be released into a soluble and bioactive form by heparin or plasmin. ECM-bound VEGF189 and VEGF206 have molecular masses consistent with the intact polypeptides. The ECM may represent an important source of VEGF and angiogenic potential.

Beclin 1 Forms Two Distinct Phosphatidylinositol 3-Kinase Complexes with Mammalian Atg14 and UVRAG
Tập 19 Số 12 - Trang 5360-5372 - 2008
Eisuke Itakura, Chieko Kishi, Kinji Inoue, Noboru Mizushima

Class III phosphatidylinositol 3-kinase (PI3-kinase) regulates multiple membrane trafficking. In yeast, two distinct PI3-kinase complexes are known: complex I (Vps34, Vps15, Vps30/Atg6, and Atg14) is involved in autophagy, and complex II (Vps34, Vps15, Vps30/Atg6, and Vps38) functions in the vacuolar protein sorting pathway. Atg14 and Vps38 are important in inducing both complexes to exert distinct functions. In mammals, the counterparts of Vps34, Vps15, and Vps30/Atg6 have been identified as Vps34, p150, and Beclin 1, respectively. However, orthologues of Atg14 and Vps38 remain unknown. We identified putative mammalian homologues of Atg14 and Vps38. The Vps38 candidate is identical to UV irradiation resistance-associated gene (UVRAG), which has been reported as a Beclin 1-interacting protein. Although both human Atg14 and UVRAG interact with Beclin 1 and Vps34, Atg14, and UVRAG are not present in the same complex. Although Atg14 is present on autophagic isolation membranes, UVRAG primarily associates with Rab9-positive endosomes. Silencing of human Atg14 in HeLa cells suppresses autophagosome formation. The coiled-coil region of Atg14 required for binding with Vps34 and Beclin 1 is essential for autophagy. These results suggest that mammalian cells have at least two distinct class III PI3-kinase complexes, which may function in different membrane trafficking pathways.