Genomic Expression Programs in the Response of Yeast Cells to Environmental Changes

Molecular Biology of the Cell - Tập 11 Số 12 - Trang 4241-4257 - 2000
Audrey P. Gasch1, Paul T. Spellman2, Camilla M. Kao1, Orna Carmel‐Harel3, Michael B. Eisen4, Gisela Storz3, David Botstein2, Patrick O. Brown1
1#N#*Departments of Biochemistry and
2Genetics, Stanford University School of Medicine, Stanford, CA 94305-5428;
3Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-5430;
4Lawrence Berkeley National Labs and Department of Molecular and Cellular Biology, University of California Berkeley, Berkeley, CA 94720; and

Tóm tắt

We explored genomic expression patterns in the yeastSaccharomyces cerevisiae responding to diverse environmental transitions. DNA microarrays were used to measure changes in transcript levels over time for almost every yeast gene, as cells responded to temperature shocks, hydrogen peroxide, the superoxide-generating drug menadione, the sulfhydryl-oxidizing agent diamide, the disulfide-reducing agent dithiothreitol, hyper- and hypo-osmotic shock, amino acid starvation, nitrogen source depletion, and progression into stationary phase. A large set of genes (∼ 900) showed a similar drastic response to almost all of these environmental changes. Additional features of the genomic responses were specialized for specific conditions. Promoter analysis and subsequent characterization of the responses of mutant strains implicated the transcription factors Yap1p, as well as Msn2p and Msn4p, in mediating specific features of the transcriptional response, while the identification of novel sequence elements provided clues to novel regulators. Physiological themes in the genomic responses to specific environmental stresses provided insights into the effects of those stresses on the cell.

Từ khóa


Tài liệu tham khảo

10.1093/nar/28.1.77

Boy-Marcotte E., 1998, J. Bacteriol., 180, 1044, 10.1128/JB.180.5.1044-1052.1998

Cappellaro C., 1998, J. Bacteriol, 180, 5030, 10.1128/JB.180.19.5030-5037.1998

10.1016/0092-8674(93)90648-A

10.1126/science.278.5338.680

Dey N.B., 1994, J. Biol. Chem., 269, 27143, 10.1016/S0021-9258(18)47136-0

10.1073/pnas.95.25.14863

10.1128/MCB.17.12.6982

10.1101/gad.12.4.586

10.1016/S0076-6879(84)05004-7

Hardie D.G., 1999, Biochem. Soc. Symp., 64, 13

10.1111/j.1432-1033.1997.00259.x

10.1099/00221287-144-3-671

10.1128/MCB.18.6.3289

10.1006/jmbi.2000.3519

10.1128/MCB.9.4.1659

10.1002/(SICI)1097-0061(199812)14:16<1511::AID-YEA356>3.0.CO;2-S

10.1002/yea.320100308

10.1128/MCB.14.3.1920

10.1128/MCB.13.1.248

10.1128/MCB.19.8.5393

Mager W.H., 1995, Microbiol. Rev., 59, 506, 10.1128/MMBR.59.3.506-531.1995

Marchase R.B., 1993, J. Biol. Chem., 268, 8341, 10.1016/S0021-9258(18)53101-X

10.1002/j.1460-2075.1993.tb05849.x

10.1002/j.1460-2075.1996.tb00576.x

10.1128/MCB.11.5.2723

10.1002/(SICI)1097-0061(199808)14:11<1041::AID-YEA296>3.0.CO;2-4

10.1093/nar/22.25.5767

10.1128/MCB.15.6.3187

10.1074/jbc.274.19.13235

10.1074/jbc.272.9.5544

10.1002/(SICI)1097-0061(199902)15:3<191::AID-YEA358>3.0.CO;2-O

10.1099/00221287-143-6-1891

10.1074/jbc.275.12.8290

10.1128/MCB.19.8.5474

10.1002/bies.950171109

10.1007/BF00351681

10.1101/gr.6.7.639

10.1016/S1097-2765(00)80064-7

10.1093/emboj/17.13.3556

10.1111/j.1365-2958.1995.tb02407.x

10.1016/S0092-8674(00)80835-1

10.1016/S0968-0004(99)01460-7

10.1016/S0014-5793(97)00868-5