Journal of Translational Medicine
1479-5876
Cơ quản chủ quản: BMC , BioMed Central Ltd.
Lĩnh vực:
Biochemistry, Genetics and Molecular Biology (miscellaneous)Medicine (miscellaneous)
Phân tích ảnh hưởng
Thông tin về tạp chí
Các bài báo tiêu biểu
A robust qualitative transcriptional signature for the correct pathological diagnosis of gastric cancer
Tập 17 - Trang 1-9 - 2019
Currently, pathological examination of gastroscopy biopsy specimens is the gold standard for gastric cancer (GC) diagnosis. However, it has a false-negative rate of 10–20% due to inaccurate sampling locations and/or insufficient sampling amount. A signature should be developed to aid the early diagnosis of GC using biopsy specimens even when they are sampled from inaccurate locations. We extracted a robust qualitative transcriptional signature, based on the within-sample relative expression orderings (REOs) of gene pairs, to discriminate both GC tissues and adjacent-normal tissues from non-GC gastritis, intestinal metaplasia and normal gastric tissues. A signature consisting of two gene pairs for GC diagnosis was identified and validated in data of both biopsy specimens and surgical resection specimens pooled from publicly available datasets measured by different laboratories with different platforms. For gastroscopy biopsy specimens, 96.20% of 79 non-GC tissues were correctly identified as non-GC, and 96.84% of 158 GC tissues and six of seven adjacent-normal tissues were correctly identified as GC. For surgical resection specimens, 98.37% of 2560 GC tissues and 97.28% of 221 adjacent-normal tissues were correctly identified as GC. Especially, 97.67% of the 257 GC patients at stage I were exactly diagnosed as GC. We additionally measured 21 GC tissues from seven different GC patients, each with three specimens sampled from three tumor locations with different proportions of the tumor epithelial cell. All these GC tissues were correctly identified as GC, even when the proportion of the tumor epithelial cell was as low as 14%. The qualitative transcriptional signature can distinguish both GC and adjacent-normal tissues from normal, gastritis and intestinal metaplasia tissues of non-GC patients even using inaccurately sampled biopsy specimens, which can be applied robustly at the individual level to aid the early GC diagnosis.
ROS-mediated up-regulation of SAE1 by Helicobacter pylori promotes human gastric tumor genesis and progression
Tập 22 - Trang 1-15 - 2024
Helicobacter pylori (H. pylori) is a major risk factor of gastric cancer (GC). The SUMO-activating enzyme SAE1(SUMO-activating enzyme subunit 1), which is indispensable for protein SUMOylation, involves in human tumorigenesis. In this study, we used the TIMER and TCGA database to explore the SAE1 expression in GC and normal tissues and Kaplan–Meier Plotter platform for survival analysis of GC patients. GC tissue microarray and gastric samples from patients who underwent endoscopic treatment were employed to detect the SAE1expression. Our results showed that SAE1 was overexpressed in GC tissues and higher SAE1 expression was associated with worse clinical characteristics of GC patients. Cell and animal models showed that H. pylori infection upregulated SAE1, SUMO1, and SUMO2/3 protein expression. Functional assays suggested that suppression of SAE1 attenuated epithelial-mesenchymal transition (EMT) biomarkers and cell proliferation abilities induced by H. pylori. Cell and animal models of ROS inhibition in H. pylori showed that ROS could mediate the H. pylori-induced upregulation of SAE1, SUMO1, and SUMO2/3 protein. RNA sequencing was performed and suggested that knockdown of SAE1 could exert an impact on IGF-1 expression. General, increased SUMOylation modification is involved in H. pylori-induced GC.
Id1 enhances human ovarian cancer endothelial progenitor cell angiogenesis via PI3K/Akt and NF-κB/MMP-2 signaling pathways
Tập 11 - Trang 1-8 - 2013
Endothelial progenitor cells (EPCs) contribute to tumor angiogenesis and growth. We previously reported that over-expression of an inhibitor of DNA binding/differentiation 1 (Id1) in EPCs can enhance EPC proliferation, migration, and adhesion. In this study, we investigated the role of Id1 in EPC angiogenesis in patients with ovarian cancer and the underlying signaling pathway. Circulating EPCs from 22 patients with ovarian cancer and 15 healthy control subjects were cultured. Id1 and matrix metalloproteinase-2 (MMP-2) expression were analyzed by real-time reverse transcription-polymerase chain reaction (RT-PCR) and western blot. EPC angiogenesis was detected by tube formation assays. Double-stranded DNA containing the interference sequences was synthesized according to the structure of a pGCSIL-GFP viral vector and then inserted into a linearized vector. Positive clones were identified as lentiviral vectors that expressed human Id1 short hairpin RNA (shRNA). Id1 and MMP-2 expression were increased in EPCs freshly isolated from ovarian cancer patients compared to those obtained from healthy subjects. shRNA-mediated Id1 down-regulation substantially reduced EPC angiogenesis and MMP-2 expression. Importantly, transfection of EPCs with Id1 in vitro induced phosphorylation of Akt (p-Akt) via phosphoinositide 3-kinase and increased the expression of MMP-2 via NF-κB. Blockage of both pathways by specific inhibitors (LY294002 and PDTC, respectively) abrogated Id1-enhanced EPC angiogenesis. Id1 can enhance EPC angiogenesis in ovarian cancer, which is mainly mediated by the PI3K/Akt and NF-κB/MMP-2 signaling pathways. Id1 and its downstream effectors are potential targets for treatment of ovarian cancer because of their contribution to angiogenesis.
Rosuvastatin exerts anti-atherosclerotic effects by improving macrophage-related foam cell formation and polarization conversion via mediating autophagic activities
Tập 19 - Trang 1-16 - 2021
Atherosclerosis is a chronic vascular disease posing a great threat to public health. We investigated whether rosuvastatin (RVS) enhanced autophagic activities to inhibit lipid accumulation and polarization conversion of macrophages and then attenuate atherosclerotic lesions. All male Apolipoprotein E-deficient (ApoE−/−) mice were fed high-fat diet supplemented with RVS (10 mg/kg/day) or the same volume of normal saline gavage for 20 weeks. The burden of plaques in mice were determined by histopathological staining. Biochemical kits were used to examine the levels of lipid profiles and inflammatory cytokines. The potential mechanisms by which RVS mediated atherosclerosis were explored by western blot, real-time PCR assay, and immunofluorescence staining in mice and RAW264.7 macrophages. Our data showed that RVS treatment reduced plaque areas in the aorta inner surface and the aortic sinus of ApoE−/− mice with high-fat diet. RVS markedly improved lipid profiles and reduced contents of inflammatory cytokines in the circulation. Then, results of Western blot showed that RVS increased the ratio LC3II/I and level of Beclin 1 and decreased the expression of p62 in aortic tissues, which might be attributed to suppression of PI3K/Akt/mTOR pathway, hinting that autophagy cascades were activated by RVS. Moreover, RVS raised the contents of ABCA1, ABCG1, Arg-1, CD206 and reduced iNOS expression of arterial wall, indicating that RVS promoted cholesterol efflux and M2 macrophage polarization. Similarly, we observed that RVS decreased lipids contents and inflammatory factors expressions in RAW264.7 cells stimulated by ox-LDL, accompanied by levels elevation of ABCA1, ABCG1, Arg-1, CD206 and content reduction of iNOS. These anti-atherosclerotic effects of RVS were abolished by 3-methyladenine intervention. Moreover, RVS could reverse the impaired autophagy flux in macrophages insulted by chloroquine. We further found that PI3K inhibitor LY294002 enhanced and agonist 740 Y-P weakened the autophagy-promoting roles of RVS, respectively. Our study indicated that RVS exhibits atheroprotective effects involving regulation lipid accumulation and polarization conversion by improving autophagy initiation and development via suppressing PI3K/Akt/mTOR axis and enhancing autophagic flux in macrophages.
A novel complement-fixing IgM antibody targeting GPC1 as a useful immunotherapeutic strategy for the treatment of pancreatic ductal adenocarcinoma
Tập 21 - Trang 1-13 - 2023
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers with a very low survival rate at 5 years. The use of chemotherapeutic agents results in only modest prolongation of survival and is generally associated with the occurrence of toxicity effects. Antibody-based immunotherapy has been proposed for the treatment of PDAC, but its efficacy has so far proved limited. The proteoglycan glypican-1 (GPC1) may be a useful immunotherapeutic target because it is highly expressed on the surface of PDAC cells, whereas it is not expressed or is expressed at very low levels in benign neoplastic lesions, chronic pancreatitis, and normal adult tissues. Here, we developed and characterized a specific mouse IgM antibody (AT101) targeting GPC1. We developed a mouse monoclonal antibody of the IgM class directed against an epitope of GPC1 in close proximity to the cell membrane. For this purpose, a 46 amino acid long peptide of the C-terminal region was used to immunize mice by an in-vivo electroporation protocol followed by serum titer and hybridoma formation. The ability of AT101 to bind the GPC1 protein was demonstrated by ELISA, and by flow cytometry and immunofluorescence analysis in the GPC1-expressing "PDAC-like" BXPC3 cell line. In-vivo experiments in the BXPC3 xenograft model showed that AT101 was able to bind GPC1 on the cell surface and accumulate in the BXPC3 tumor masses. Ex-vivo analyses of BXPC3 tumor masses showed that AT101 was able to recruit immunological effectors (complement system components, NK cells, macrophages) to the tumor site and damage PDAC tumor tissue. In-vivo treatment with AT101 reduced tumor growth and prolonged survival of mice with BXPC3 tumor (p < 0.0001). These results indicate that AT101, an IgM specific for an epitope of GPC1 close to PDAC cell surface, is a promising immunotherapeutic agent for GPC1-expressing PDAC, being able to selectively activate the complement system and recruit effector cells in the tumor microenvironment, thus allowing to reduce tumor mass growth and improve survival in treated mice.
The timeline and risk factors of clinical progression of COVID-19 in Shenzhen, China
Tập 18 - Trang 1-11 - 2020
The novel coronavirus disease 2019 (COVID-19) broke out globally. Early prediction of the clinical progression was essential but still unclear. We aimed to evaluate the timeline of COVID-19 development and analyze risk factors of disease progression. In this retrospective study, we included 333 patients with laboratory-confirmed COVID-19 infection hospitalized in the Third People’s Hospital of Shenzhen from 10 January to 10 February 2020. Epidemiological feature, clinical records, laboratory and radiology manifestations were collected and analyzed. 323 patients with mild-moderate symptoms on admission were observed to determine whether they exacerbated to severe-critically ill conditions (progressive group) or not (stable group). We used logistic regression to identify the risk factors associated with clinical progression. Of all the 333 patients, 70 (21.0%) patients progressed into severe-critically ill conditions during hospitalization and assigned to the progressive group, 253 (76.0%) patients belonged to the stable group, another 10 patients were severe before admission. we found that the clinical features of aged over 40 (3.80 [1.72, 8.52]), males (2.21 [1.20, 4.07]), with comorbidities (1.78 [1.13, 2.81]) certain exposure history (0.38 [0.20, 0.71]), abnormal radiology manifestations (3.56 [1.13, 11.40]), low level of T lymphocytes (0.99 [0.997, 0.999]), high level of NLR (0.99 [0.97, 1.01]), IL-6 (1.05 [1.03, 1.07]) and CRP (1.67 [1.12, 2.47]) were the risk factors of disease progression by logistic regression. The potential risk factors of males, older age, with comorbidities, low T lymphocyte level and high level of NLR, CRP, IL-6 can help to predict clinical progression of COVID-19 at an early stage.
Identification and functional activity of Nik related kinase (NRK) in benign hyperplastic prostate
- 2024
Benign prostatic hyperplasia (BPH) is common in elder men. The current study aims to identify differentially expressed genes (DEGs) in hyperplastic prostate and to explore the role of Nik related kinase (NRK) in BPH. Four datasets including three bulk and one single cell RNA-seq (scRNA-seq) were obtained to perform integrated bioinformatics. Cell clusters and specific metabolism pathways were analyzed. The localization, expression and functional activity of NRK was investigated via RT-PCR, western-blot, immunohistochemical staining, flow cytometry, wound healing assay, transwell assay and CCK-8 assay. A total of 17 DEGs were identified by merging three bulk RNA-seq datasets. The findings of integrated single-cell analysis showed that NRK remarkably upregulated in fibroblasts and SM cells of hyperplasia prostate. Meanwhile, NRK was upregulated in BPH samples and localized almost in stroma. The expression level of NRK was significantly correlated with IPSS and Qmax of BPH patients. Silencing of NRK inhibited stromal cell proliferation, migration, fibrosis and EMT process, promoted apoptosis and induced cell cycle arrest, while overexpression of NRK in prostate epithelial cells showed opposite results. Meanwhile, induced fibrosis and EMT process were rescued by knockdown of NRK. Furthermore, expression level of NRK was positively correlated with that of α-SMA, collagen-I and N-cadherin, negatively correlated with that of E-cadherin. Our novel data identified NRK was upregulated in hyperplastic prostate and associated with prostatic stromal cell proliferation, apoptosis, cell cycle, migration, fibrosis and EMT process. NRK may play important roles in the development of BPH and may be a promising therapeutic target for BPH/LUTS.
Plasma proteomic analysis of autoimmune hepatitis in an improved AIH mouse model
Tập 18 - Trang 1-16 - 2020
The prevalence of autoimmune hepatitis (AIH) is increasing, and its early clinical diagnosis is difficult. The pathogenesis of AIH remains unclear, and AIH-related studies are largely limited because of lack of suitable mouse models. To obtain a good tool for research on AIH, we first established an improved immune-mediated mouse model that can mimic the pathological process of AIH as in the human body, through repeated injections of human cytochrome P450 2D6 (CYP2D6) plasmid. Next, a proteomic analysis based on isobaric tag (IBT) technology was performed to detect the differentially expressed proteins (DEPs), and related biological functions and pathways in the plasma of AIH and normal mice. Finally, we performed enzyme-linked immunosorbent assay (ELISA) to further confirm the most abundant DEP in the plasma of patients with AIH. Autoantibodies and the characteristic pathology of AIH were observed in our mouse model. Inflammatory infiltration also increased in the livers of AIH mice over time and plateaued by day 42 post the first injection. Chronic hepatitis was most severe on day 35 with the development of fibrosis as well, and the plasma of AIH mice were collected for proteomic analysis. A total of 176 DEPs were found in this experiment, of which 148 DEPs were up-regulated and 28 DEPs were down-regulated. Thirty significant Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways (P < 0.05) were detected. Arginine biosynthesis was found to be the most significant pathway involved in the AIH process. During the Gene Ontology (GO) analysis, most DEPs were found to be involved in the binding, cellular, and metabolic processes. Using ELISA, the most overexpressed DEP, serum amyloid A 1 (SAA1), was confirmed to be increased specifically in the plasma of patients with AIH compared to other chronic hepatitis. Different plasma levels of SAA1 were also found related to different grades of inflammation and stages of fibrosis in the liver of patients with AIH. Our study is the first to describe the proteomics analysis of a true sense of AIH mouse model, which is beneficial for a better understanding of AIH pathogenesis and identifying potential biomarkers for its clinical diagnosis.