Synthesis and characterization of nitrides of iridium and palladiumJournal of Materials Research - - 2008
Jonathan C. Crowhurst, Alexander F. Goncharov, B. Sadigh, J.M. Zaug, D. Aberg, Yue Meng, Vitali B. Prakapenka
We describe the synthesis of nitrides of iridium and palladium using the laser-heated diamond anvil cell. We have used the in situ techniques of x-ray powder diffraction and Raman scattering to characterize these compounds and have compared our experimental findings where possible to the results of first-principles theoretical calculations. We suggest that palladium nitride is isostructural with pyrite, while iridium nitride has a monoclinic symmetry and is isostructural with baddeleyite.
Measurement of electromigration activation energy in eutectic SnPb and SnAg flip-chip solder joints with Cu and Ni under-bump metallizationJournal of Materials Research - Tập 25 - Trang 1847-1853 - 2011
Hsiao-Yun Chen, Chih Chen
Electromigration activation energy is measured by a built-in sensor that detects the real temperature during current stressing. Activation energy can be accurately determined by calibrating the temperature using the temperature coefficient of resistivity of an Al trace. The activation energies for eutectic SnAg and SnPb solder bumps are measured on Cu under-bump metallization (UBM) as 1.06 and 0.87 eV, respectively. The activation energy mainly depends on the formation of Cu–Sn intermetallic compounds. On the other hand, the activation energy for eutectic SnAg solder bumps with Cu–Ni UBM is measured as 0.84 eV, which is mainly related to void formation in the solder.
Bombarding energy dependence of bonding structure in amorphous carbon interlayer and its effect on diamond nucleationJournal of Materials Research - Tập 14 - Trang 2029-2035 - 2011
U. C. Oh, De Gang Cheng, Fan Xiu Lu, Jung Ho Je
The bombarding energy dependence of bonding structure in amorphous carbon interlayer and its effect on diamond nucleation density (Nd) were studied. Amorphous carbon (a-C) interlayer was deposited by magnetron sputtering. Interestingly, the intensity ratio (ID/IG) of the D band (∼1400 cm−1) to the G band (∼1570 cm−1) in the Raman spectra and the optical band gap of the a-C film were found to be inversely proportional to the sputtering power, that is, to bombarding energy. When diamond was subsequently deposited at 800 °C by microwave plasma chemical vapor deposition (CVD), diamond could be grown only on the interlayers with higher ID/IG (≥2.20), and Nd was increased up to 2 × 106/cm2 with the increase of ID/IG ratio, that is, with the decrease of the bombarding energy. We experimentally confirmed that the amount of the sp3 bonded carbon clusters within the interlayer was dependent on the bombarding energy of the particles, determining the diamond nucleation density. We suggest that the transformation of the amorphous carbon into graphitic carbon should be effectively prevented for the diamond nucleation on the a-C interlayer.
Nanoindentation cracking in gallium arsenide: Part II. TEM investigationJournal of Materials Research - Tập 28 - Trang 2799-2809 - 2013
Cédric Pouvreau, Kilian Wasmer, Haïcha Hessler-Wyser, Jean-Daniel Ganière, Jean-Marc Breguet, Johann Michler, Daniel Schulz, Jacques Henri Giovanola
The nanoindentation fracture behavior of gallium arsenide (GaAs) is examined from two perspectives in two parent papers. In the first paper (part I), we address the morphology of the crack field induced by different types of indenters by means of in situ nanoindentation inside a scanning electron microscope (SEM) and of cleavage cross-sectioning techniques. In the present paper (part II), we investigate the early stage of crack nucleation under wedge nanoindentation through cathodoluminescence and transmission electron microscopy. We find that the apex angle of the wedge indenter influences the dislocation microstructure and, as a consequence, the mechanism of crack nucleation under nanoindentation. The formation of microtwins depends on both the orientation of the indenter with respect to the orientation of the GaAs crystal and on the apex angle of the indenter. For dicing applications of GaAs wafers, it is desirable to have an opening angle of the indenter smaller than 70° to facilitate the formation of precursor cracks.
Optical propagation loss reduction in ZnO thin films under CO2 laser treatmentJournal of Materials Research - Tập 5 - Trang 1929-1932 - 2011
M. Bertolotti, M. V. Laschena, M. Rossi, A. Ferrari, L. S. Qian, F. Quaranta, A. Valcntini
The reduction of propagation losses in ZnO thin film waveguides for integrated optics after CO2 laser treatment is studied. RHEED patterns show that the measured decrease of optical losses is accompanied by an increase of ordering after the laser treatment. The reordering depends on the initial film state and the laser irradiation conditions.
In situ thermographic observations on the compression behavior of a relaxed Zr-based bulk-metallic glassJournal of Materials Research - - 2007
Wenhui Jiang, F. X. Liu, Hao-Hsiang Liao, Hahn Choo, Peter K. Liaw
Using an infrared camera, the plastic deformation of a relaxed Zr52.5Cu17.9Ni14.6Al10.0Ti5.0 bulk-metallic glass in a moderately high strain rate compression was observed in situ. The specimen exhibits an inhomogeneous deformation, which is manifested by serrated plastic flow, shear banding, and obvious work softening. Shear-banding operations were observed throughout the plastic deformation. Shear-banding operations started before the nominal yielding; shear bands could not block each other, but their interaction seems to accelerate the plastic deformation. A significant increase in the specimen’s temperature was observed due to shear banding.
Metastable phase formation by ion mixing of Nb–Al multilayersJournal of Materials Research - Tập 4 - Trang 1385-1392 - 2011
K. Pampus, K. Dyrbye, B. Torp, R. Bormann
The structure of Nb–Al thin films after ion mixing was studied for compositions from 20 to 85 at. % Al as a function of temperature in the range between 40 and 620 K. The phase formation was determined by transmission electron microscopy. At lower temperatures, only supersaturated bcc-solid solution, NbAl, and amorphous phase were found throughout the studied composition range. Besides these phases irradiation at temperatures above 470 K causes the formation of a metastable crystalline compound at an overall composition close to Nb25Al75, and for T = 623 K the equilibrium compound NbAl3 is formed. The other intermetallic phases Nb2Al and Nb3Al have not been observed at any irradiation temperature. Calculations of the Gibbs free energies of the various phases are presented, and the reliability of extrapolations to regions of metastability with respect to temperature and composition is commented on. The phase formation during heavy-ion irradiation is discussed in the context of the calculated free energies and kinetic constraints. For temperatures above 300 K, the attainment of a metastable phase equilibrium between the bcc solid solution and the amorphous phase is proposed due to the influence of radiation enhanced diffusion.
Shear band widening mechanism in Ti–6Al–4V under high strain rate deformationJournal of Materials Research - Tập 35 - Trang 1623-1634 - 2020
Anuj Bisht, Subhash Kumar, Ka Ho Pang, Rongxin Zhou, Anish Roy, Vadim V. Silberschmidt, Satyam Suwas
In this study, mechanical properties and microstructural investigation of Ti64 at high strain rate are studied using a split-Hopkinson pressure bar method under compression for temperatures up to 800 °C. Flow softening in the mechanical response of material to such loading conditions hints at instability in compression, which increases with an increase in temperature. Microstructural characterization of the deformed material is characterized using the electron-backscattered diffraction technique. It reveals the presence of instabilities in Ti64 in the form of a fine network of shear bands. The shear band width grows with an increase in temperature along with the area fraction of shear band in the material, displaying its improved capacity to contain microstructural instabilities at higher temperature. After a detailed microstructural investigation, a mechanism for shear band widening is proposed. Based on this mechanism, a path generating nuclei within shear bands is discussed.
Mesoporous silica beads encapsulated with functionalized palladium nanocrystallites: Novel catalyst for selective hydrogen evolutionJournal of Materials Research - Tập 32 - Trang 3574-3584 - 2017
Prem Chandra Pandey, Shubhangi Shukla, Yashashwa Pandey
2-(3,4 epoxycyclohexyl)ethyltrimethoxysilane (EETMS)/3-glycidoxypropyltrimethoxysilane (GPTMS) mediated, in situ synthesis of functional palladium (Pd) nanocomposites over the graphene oxide (GO) surface is reported. The prepared nanocomposites viz, Pd/EETMS, Pd/GPTMS, Pd/GO/EETMS, and Pd/GO/GPTMS, are encapsulated into mesoporous (2–10 nm) silica-alginate beads to primarily serve the development of cost-effective catalyst for on-board generation of hydrogen. Major findings involve: (i) the synthesis of porous silica alginate beads, with the controlled pore sizes (2–10 nm) as a function of concentration of alkoxysilanes, (ii) onboard release of hydrogen from the decomposition of hydrazine, which is evaluated as: (1) time-dependent disappearance of the N–N bond stretching band at 1069 cm−1 based on the FTIR spectroscopy, (2) volumetric estimation of the equimolar hydrogen using methylene blue (MB); (3) catalytic reduction of p-nitroaniline (PNA). The decomposition of high concentration of hydrazine is made possible using very low concentration of palladium. On calcination the efficiency of catalysts found to enhance further. The noteworthy finding is probing the hydrogen evolution using FTIR spectroscopy. Hydrogen selectivity of ∼100% is obtained from the most efficient catalyst (Pd/GO/EETMS-623 K).
Analysis of stability of a planar solid-liquid interface in a dilute binary alloyJournal of Materials Research - Tập 5 - Trang 223-228 - 2011
V. Laxmanan
The question of stability of a planar solid-liquid interface in undercooled pure and alloy melts has been reconsidered without the restrictive assumption of no heat flow in the solid made in earlier works. The modified analysis indicates that provided the thermal gradient on the solid side of the interface, Gs, is positive, stability can be achieved in an undercooled alloy melt for growth rates R>Ra, whereas a recent analysis by Trivedi and Kurz, which assumes Gs = 0, suggests that stability is possible only if R>Ra + Rat. Here Ra is the familiar absolute stability limit of Mullins and Sekerka and Rat, is the absolute stability limit in an undercooled pure melt, as identified by Trivedi and Kurz. The absolute stability criterion for steady-state planar growth in an undercooled alloy melt is thus the same as derived earlier by Mullins and Sekerka for directional solidification. Relaxing the restrictive assumption of Gs = 0 also reveals that there is a regime of stability for low growth rates and low supercoolings. Stability is possible under these conditions if Gs>0, and the bath undercooling ΔTb < ΔTO + ΔTh/2, where ΔTO is the freezing range of the alloy and ΔTh is the hypercooling limit for the pure melt. For large supercoolings, Gs < 0, and the interface will be unstable with respect to large wavelength perturbations, even if R > Ra + Rat.