Nanoindentation and contact-mode imaging at high temperatures

Journal of Materials Research - Tập 21 Số 3 - Trang 725-736
Christopher A. Schuh1, Corinne E. Packard1, Alan C. Lund1
1Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, USA

Tóm tắt

Technical issues surrounding the use of nanoindentation at elevated temperatures are discussed, including heat management, thermal equilibration, instrumental drift, and temperature-induced changes to the shape and properties of the indenter tip. After characterizing and managing these complexities, quantitative mechanical property measurements are performed on a specimen of standard fused silica at temperatures up to 405 °C. The extracted values of hardness and Young's modulus are validated against independent experimental data from conventional mechanical tests, and accuracy comparable to that obtained in standard room-temperature nanoindentation is demonstrated. In situ contact-mode images of the surface at temperature are also presented.

Từ khóa


Tài liệu tham khảo

10.1007/s11661-999-0051-7

Bhushan, 1999, Handbook of Micro/Nano Tribology, 433

10.1179/026708400101517044

10.1557/jmr.2004.19.1.3

10.1016/j.actamat.2003.11.029

10.1557/JMR.1992.1564

10.1002/(SICI)1521-396X(199803)166:1<115::AID-PSSA115>3.0.CO;2-A

10.1002/pssa.2211370219

10.1557/JMR.1999.0303

10.1557/JMR.2005.0226

10.1016/S0921-5093(02)00902-4

Zhang, 2005, Indentation stress dependence of the temperature range of microscopic superelastic behavior of nickel-titanium thin films., J. Appl. Phys., 033505, 98

Carslaw, 1959, Conduction of Heat in Solids

10.1063/1.1721138

10.1080/01418610108216651

10.1080/01418619708214217

10.3139/146.030798

Mazurin, 1983, Handbook of Glass Data

10.3139/146.030802

10.1063/1.1663238

10.1038/359401a0

10.1016/1359-6462(95)00686-9

10.1016/S1359-6454(00)00378-5

10.1038/nmat1429

10.1080/01418619808241929

10.1063/1.1735852

10.1557/JMR.2002.0094

10.1557/jmr.2004.19.1.137

10.1557/JMR.2004.0331

10.1016/j.intermet.2004.04.011

10.1016/S0921-5093(01)01079-6

10.1016/S1359-6454(01)00328-7

10.1007/978-0-387-22462-6

10.1016/S1359-6462(99)00245-6

10.1016/S1359-6462(02)00377-9

Atkins, 1966, Indentation hardness and the creep of solids., J. Inst. Met., 94, 369

Mulhearn, 1960, Creep and hardness of metals: A physical study., J. Inst. Met., 89, 7

10.1016/0956-7151(91)90043-Z

Sargent, 1992, Indentation creep., Mater. Sci. Technol., 8, 594, 10.1179/mst.1992.8.7.594

Lucas, 1995, Time dependent indentation testing at non-ambient temperatures utilizing the high temperature mechanical properties microprobe, in, Thin Films: Stresses and Mechanical Properties V,, 356, 137

10.1080/01418610208235727

10.1063/1.1784891

10.1016/j.actamat.2004.09.005

31.Technical data sheet, Macor, Corning, Inc., Corning, NY.

10.1557/JMR.2002.0169

10.1017/CBO9780511623080

10.1557/JMR.2004.0449

10.1111/j.1151-2916.1981.tb09884.x

10.1016/S1359-6462(00)00311-0

Pierson, 1993, Handbook of Carbon, Graphite, Diamond, and Fullerenes

10.1080/14786430310001616045

10.1016/j.msea.2004.01.061

10.1080/01418619608239708

10.1016/S0921-5093(00)01287-9

10.1063/1.371648

Kraft, 2001, The effect of temperature and strain rate on the hardness of Al and Al-based foams as measured by nanoindentation., Z. Metallkde., 92, 1068

10.1016/j.eurpolymj.2004.01.027