Plastic response of the native oxide on Cr and Al thin films from in situ conductive nanoindentation
Tóm tắt
Thin native oxide layers can dominate the mechanical properties of metallic thin films. However, to date there has been little quantification of how such overlayers affect yield and fracture during indentation in constrained film systems. To gain insight into such processes, electrical contact resistance was measured in situ during nanoindentation on constrained thin films of epitaxial Cr and polycrystalline Al, both possessing a native oxide overlayer. Measurements during loading of the films show both increases and decreases in current, which can then be used to distinguish between various sources of plasticity. Ex situ measurements of the oxide thickness are used to provide a starting point for elasticity simulations of stress in both systems. The results show that dislocation nucleation in the metal film can be differentiated from oxide fracture during indentation.
Tài liệu tham khảo
N. Gane and F.P. Bowden: Microdeformation of solids. J. Appl. Phys. 39(3), 1432 (1968).
W.W. Gerberich, J.C. Nelson, E.T. Lilleodden, P. Anderson, and J.T. Wyrobek: Indentation induced dislocation nucleation: The initial yield point. Acta Mater. 44(9), 3585 (1995).
A.B. Mann and J.B. Pethica: The role of atomic size asperities in the mechanical deformation of nanocontacts. Appl. Phys. Lett. 69(7), 907 (1996).
D. Kramer, H. Huang, M. Kriese, J. Robach, J. Nelson, A. Wright, D. Bahr, and W.W. Gerberich: Yield strength predictions from the plastic zone around nanocontacts. Acta Mater. 47(1), 333 (1999).
D.F. Bahr, D.E. Kramer, and W.W. Gerberich: Non-linear deformation mechanisms during nanoindentation. Acta Mater. 46(10), 3605 (1997).
D.E. Kramer, K.B. Yoder, and W.W. Gerberich: Surface constrained plasticity: Oxide rupture and the yield point process. Philos. Mag. A 81(8), 2033 (2000).
J.B. Pethica and W.C. Oliver: Tip surface interactions in STM and AFM. Phys. Scr. T. 19, 61 (1987).
W.A. Soer, K.E. Aifantis, and J.T.M. De Hosson: Incipient plasticity during nanoindentation at grain boundaries in body-centered cubic materials. Acta Mater. 53, 4665 (2005).
S. Ruffell, J.E. Bradby, J.S. Williams, and O.L. Warren: An in situ electrical measurement technique via a conducting diamond tip for nanoindentation in silicon. J. Mater. Res. 22(3), 578 (2007).
R. Nowak, D. Chrobak, S. Nagao, D. Vodnick, M. Berg, A. Tukiainen, and M. Pessa: An electric current spike linked to nanoscale plasticity. Nat. Nanotechnol. 4, 287 (2009).
S.P. Sharma and J.H.I. Thomas: Dielectric breakdown of Ag2S in the Au-Ag2S-Ag system. J. Appl. Phys. 47(5), 1808 (1975).
L. Fang, C.L. Muhlstein, J.G. Collins, A.L. Romasco, and L.H. Friedman: Continuous electrical in situ contact area measurement during instrumented indentation. J. Mater. Res. 23(9), 2480 (2008).
B. Bhushan, M. Palacio, and B. Kinzig: AFM-based nanotribological and electrical characterization of ultrathin wear-resistant ionic liquid films. J. Colloid Interface Sci. 317, 275 (2008).
J.B. Pethica and D. Tabor: Contact of characterised metal surfaces at very low loads: Deformation and adhesion. Surf. Sci. 89, 182 (1979).
D.I. Kim, N. Pradeep, F.W. DelRio, and R.F. Cook: Mechanical and electrical coupling at metal-insulator-metal nanoscale contacts. Appl. Phys. Lett. 93, 203102 (2008).
J.C. Maxwell: Treatise on Electricity and Magnetism, Vol. 1, 3rd edition (Dover Publications, New York, NY, 1954).
R. Holm: Electric Contacts. (Springer-Verlag, Berlin/Heidelberg/New York, 1967), pp. 1–55, 367–397.
J.A. Greenwood and J.H. Tripp: The elastic contact of rough spheres. Trans. ASME, Series E. J. Appl. Mech. 34(153), 417 (1967).
L. Kogut and K. Komvopoulos: Electrical contact resistance theory for conductive rough surfaces. J. Appl. Phys. 94(5), 3153 (2003).
Y.V. Sharvin: On the possible method for studying fermi surfaces. Zh. Eksp. Teor. Fiz. 48, 984 (1965).
B. Nikolic and P.B. Allen: Electron transport through a circular constriction. Phys. Rev. B 60(6), 3963 (1998).
G. Wexler: The size effect and the non-local Boltzmann transport equation in orifice and disk geometry. Proc. Phys. Soc. 89, 927 (1966).
A. Tholen, D. Erts, H. Olin, L. Ryen, and E. Olsson: Maxwell and Sharvin conductance in gold point contacts investigated using TEM-STM. Phys. Rev. B 61(19), 12725 (2000).
L. Kogut and K. Komvopoulos: Electrical contact resistance theory for conductive rough surfaces separated by a thin insulating film. J. Appl. Phys. 95(2), 576 (2003).
A. Matthiessen and C. Vogt: On the influence of temperature on the electric conductive-power of alloys. Philos. Trans. R Soc. London 154, 167 (1864).
R. Zuercher, M. Mueller, F. Sachslehner, V. Groeger, and M. Zehetbauer: Dislocation resistivity in Cu: Dependence of the deviations from Matthiessen’s rule on temperature, dislocation density, and impurity content. J. Phys. Condens. Matter 7, 3515 (1995).
B.R. Watts: Calculation of electrical resistivity produced by dislocations in various metals. J. Phys. F: Met. Phys. 18, 1197 (1988).
B. Sipos, N. Barisic, R. Gaal, L. Forro, J. Karpinski, and F. Rullier-Albenque: Matthiessen’s rule in MgB2: Resistivity and Tc as a function of point defect concentration. Phys. Rev. B 76, 132504 (2007).
G. Salomonsen, N. Norman, O. Lonsjo, and T.G. Finstad: Kinetics and mechanism of oxide formation on titanium, vanadium, and chromium thin films. J. Less Common Met. 158, 251 (1990).
K. Tamura, Y. Kimura, H. Suzuki, O. Kido, T. Sato, T. Tanigaki, M. Kurumada, Y. Saito, and C. Kaito: Structure and thickness of natural oxide layer on ultrafine particle. Jpn. J. Appl. Phys. 42(12), 7489 (2003).
J.S. Moodera, E.F. Gallagher, K. Robinson, and J. Nowak: Optimum tunnel barrier in ferromagnetic-insulator-ferromagnetic tunneling structures. Appl. Phys. Lett. 70(22), 3050 (1997).
R.W.J. Chia, C.C. Wang, and J.J.K. Lee: Effect of adatom mobility and substrate finish on film morphology and porosity: Thin chromium film on hard disk. J. Magn. Magn. Mater. 209, 45 (2000).
J. Parker, L. Wang, K.A. Steiner, P.A. Crowell, and C.L. Leighton: Exchange bias as a probe of the incommensurate spin-density wave in epitaxial Fe/Cr (001). Phys. Rev. Lett. 97, 227206 (2006).
M.R. Fitzsimmons and C.F. Majkrzak: Application of polarized neutron spectroscopy to studies of artificially structured magnetic materials. Modern Techniques for Characterizing Magnetic Materials, edited by Y. Zhu. (Kluwer, Boston, 2005), pp. 107–152.
R. Cheng, C.N. Borca, B. Xu, L. Yuan, B. Doudin, S.H. Liou, and P.A. Dowben: Oxidation of metals at the chromium oxide interface. Appl. Phys. Lett. 81(11), 2109 (2002).
I. Ikemoto, I. Kikujiro, S. Kinoshita, H. Kuroda, M.A. Alario Franco, and J.M. Thomas: X-ray photoelectron spectroscopic studies of CrO2 and some related chromium compounds. J. Solid State Chem. 17(4), 425 (1976).
B.V. Crist: Handbook of Monochromatic XPS Spectra, Vol. 1, (XPS International, Inc., Mountain View, CA, 1999).
J.E. Castle, H. Chapman-Kpodo, A. Proctor, and A.M. Salvi: Curve-fitting in XPS using extrinsic and intrinsic background structure. J. Electron. Spectrosc. Relat. Phenom. 106, 65 (2000).
M. Aronniemi, J. Sainio, and J. Lahtinen: Chemical state quantification of iron and chromium oxides using XPS: The effect of the background subtraction method. Surf. Sci. 578, 108 (2005).
C.S. Fadley: Instrumentation for surface studies: XPS angular distributions. J. Electron. Spectrosc. Relat. Phenom. 5(1), 725 (1974).
J.F. Watts: An Introduction to Surface Analysis by Electron Spectroscopy. (Oxford University Press, New York, NY, 1990), p. 7.
M.P. Seah and W.A. Dench: Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids. Surf. Interface Anal. 1(1), 2 (1979).
H. Hertz: On the contact of elastic solids. J. für reine angewandte Mechanik. Fur die reine und angewandte Mathematik. 92, 151 (1881) (An English translation is available as: Miscellaneous papers by H. Hertz, Eds Schott and Jones, MacMillan, London, 1896).
K.L. Johnson: Contact Mechanics (Cambridge University Press, Cambridge, U.K., 1985), p. 90.
O.L. Warren, S.A. Downs, and T.J. Wyrobek: Challenges and interesting observations associated with feedback-controlled nanoindentation. Z. Metallkd. 95, 287 (2004).
J.S. Villarrubia: Algorithms for scanned probe microscope image simulation, surface reconstruction, and tip estimation. J. Res. Nat. Inst. Stand. Technol. 102, 425 (1997).
N. Schwarzer: FilmDoctor, SIO® (Saxonian Institute of Surface Mechanics,Ummanz, Germany, 2011), www.siomec.de.
V. Provenzano, R. Valiev, D.G. Rickerby, and G. Valdre: Mechanical properties of nanostructured chromium. Nanostruct. Mater. 12, 1103 (1999).
S.A. Firstov, T.G. Rogul, and S.N. Dub: Grain boundary engineering of nanostructured chromium films, in Innovative Superhard Materials and Sustainable Coatings for Advanced Manufacturing, edited by J. Lee, N. Novikov, and V. Turkevich (Springer, Netherlands, 2005) pp. 225–232.
M.S. Bobji, S.K. Biswas, and J.B. Pethica: Effect of roughness on the measurement of nanohardness—a computer simulation study. Appl. Phys. Lett. 71(8), 1059 (1997).
W.W. Gerberich, N.I. Tymiak, J.C. Grunlan, M.F. Horstemeyer, and M.I. Baskes: Interpretations of indentation size effects. J. Appl. Mech. 69(4), 433 (2002).
H. Habbab, B.G. Mellor, and S. Syngellakis: Post-yield characterisation of metals with significant pile-up through spherical indentations. Acta Mater. 54(7), 1965 (2006).
R. Saha and W.D. Nix: Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Mater. 50(1), 23 (2002).
T. Ohmura, S. Matsuoka, K. Tanaka, and T. Yoshida: Nanoindentation load-displacement behavior of pure face centered cubic metal thin films on a hard substrate. Thin Solid Films 385(1-2), 198 (2001).
D.E. Kramer, A.A. Volinsky, N.R. Moody, and W.W. Gerberich: Substrate effects on indentation plastic zone development in thin soft films. J. Mater. Res. 16(11), 3150 (2001).
T.Y. Tsui, C.A. Ross, and G.M. Pharr: A method for making substrate-independent hardness measurements of soft metallic films on hard substrates by nanoindentation. J. Mater. Res. 18(6), 1383 (2003).