Journal of Experimental Biology

  1477-9145

  0022-0949

  Anh Quốc

Cơ quản chủ quản:  Company of Biologists Ltd , COMPANY BIOLOGISTS LTD

Lĩnh vực:
Ecology, Evolution, Behavior and SystematicsAquatic ScienceMedicine (miscellaneous)Insect ScienceAnimal Science and ZoologyPhysiologyMolecular Biology

Các bài báo tiêu biểu

Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses
Tập 208 Số 15 - Trang 2819-2830 - 2005
Paul H. Yancey
SUMMARYOrganic osmolytes are small solutes used by cells of numerous water-stressed organisms and tissues to maintain cell volume. Similar compounds are accumulated by some organisms in anhydrobiotic, thermal and possibly pressure stresses. These solutes are amino acids and derivatives,polyols and sugars, methylamines, methylsulfonium compounds and urea. Except for urea, they are often called `compatible solutes', a term indicating lack of perturbing effects on cellular macromolecules and implying interchangeability. However, these features may not always exist, for three reasons. First, some of these solutes may have unique protective metabolic roles, such as acting as antioxidants (e.g. polyols, taurine, hypotaurine),providing redox balance (e.g. glycerol) and detoxifying sulfide (hypotaurine in animals at hydrothermal vents and seeps). Second, some of these solutes stabilize macromolecules and counteract perturbants in non-interchangeable ways. Methylamines [e.g. trimethylamine N-oxide (TMAO)] can enhance protein folding and ligand binding and counteract perturbations by urea (e.g. in elasmobranchs and mammalian kidney), inorganic ions, and hydrostatic pressure in deep-sea animals. Trehalose and proline in overwintering insects stabilize membranes at subzero temperatures. Trehalose in insects and yeast,and anionic polyols in microorganisms around hydrothermal vents, can protect proteins from denaturation by high temperatures. Third, stabilizing solutes appear to be used in nature only to counteract perturbants of macromolecules,perhaps because stabilization is detrimental in the absence of perturbation. Some of these solutes have applications in biotechnology, agriculture and medicine, including in vitro rescue of the misfolded protein of cystic fibrosis. However, caution is warranted if high levels cause overstabilization of proteins.
The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’
Tập 213 Số 6 - Trang 912-920 - 2010
George N. Somero
SUMMARYPhysiological studies can help predict effects of climate change through determining which species currently live closest to their upper thermal tolerance limits, which physiological systems set these limits, and how species differ in acclimatization capacities for modifying their thermal tolerances. Reductionist studies at the molecular level can contribute to this analysis by revealing how much change in sequence is needed to adapt proteins to warmer temperatures — thus providing insights into potential rates of adaptive evolution — and determining how the contents of genomes — protein-coding genes and gene regulatory mechanisms — influence capacities for adapting to acute and long-term increases in temperature. Studies of congeneric invertebrates from thermally stressful rocky intertidal habitats have shown that warm-adapted congeners are most susceptible to local extinctions because their acute upper thermal limits (LT50 values) lie near current thermal maxima and their abilities to increase thermal tolerance through acclimation are limited. Collapse of cardiac function may underlie acute and longer-term thermal limits. Local extinctions from heat death may be offset by in-migration of genetically warm-adapted conspecifics from mid-latitude ‘hot spots’, where midday low tides in summer select for heat tolerance. A single amino acid replacement is sufficient to adapt a protein to a new thermal range. More challenging to adaptive evolution are lesions in genomes of stenotherms like Antarctic marine ectotherms, which have lost protein-coding genes and gene regulatory mechanisms needed for coping with rising temperature. These extreme stenotherms, along with warm-adapted eurytherms living near their thermal limits, may be the major ‘losers’ from climate change.
Oxygen- and capacity-limitation of thermal tolerance: a matrix for integrating climate-related stressor effects in marine ecosystems
Tập 213 Số 6 - Trang 881-893 - 2010
Hans‐Otto Pörtner
SUMMARYThe concept of oxygen- and capacity-dependent thermal tolerance in aquatic ectotherms has successfully explained climate-induced effects of rising temperatures on species abundance in the field. Oxygen supply to tissues and the resulting aerobic performance characters thus form a primary link between organismal fitness and its role and functioning at the ecosystem level. The thermal window of performance in water breathers matches their window of aerobic scope. Loss of performance reflects the earliest level of thermal stress, caused by hypoxaemia and the progressive mismatch of oxygen supply and demand at the borders of the thermal envelope. Oxygen deficiency elicits the transition to passive tolerance and associated systemic and cellular stress signals like hormonal responses or oxidative stress as well as the use of protection mechanisms like heat shock proteins at thermal extremes. Thermal acclimatization between seasons or adaptation to a climate regime involves shifting thermal windows and adjusting window widths. The need to specialize on a limited temperature range results from temperature-dependent trade-offs at several hierarchical levels, from molecular structure to whole-organism functioning, and may also support maximized energy efficiency. Various environmental factors like CO2 (ocean acidification) and hypoxia interact with these principal relationships. Existing knowledge suggests that these factors elicit metabolic depression supporting passive tolerance to thermal extremes. However, they also exacerbate hypoxaemia, causing a narrowing of thermal performance windows and prematurely leading the organism to the limits of its thermal acclimation capacity. The conceptual analysis suggests that the relationships between energy turnover, the capacities of activity and other functions and the width of thermal windows may lead to an integrative understanding of specialization on climate and, as a thermal matrix, of sensitivity to climate change and the factors involved. Such functional relationships might also relate to climate-induced changes in species interactions and, thus, community responses at the ecosystem level.
The Propulsion of Sea-Urchin Spermatozoa
Tập 32 Số 4 - Trang 802-814 - 1955
J. Gray, Gregory J. Hancock
ABSTRACT The movement of any short length of the tail of a spermatozoon of Psammechinus miliaris and the characteristic changes which it undergoes during each cycle of its displacement through the water can be described in terms of the form and speed of propagation of the bending waves which travel along the tail (Gray, 1953, 1955); the form of the wave depends on the maximum extent of bending reached by each element and on the difference in phase between adjacent elements. The object of this paper is to consider the forces exerted on the tail as it moves relative to the surrounding medium and to relate the propulsive speed of the whole spermatozoon to the form and speed of propagation of the bending waves generated by the tail. The mathematical theory of the propulsive properties of thin undulating filaments has recently been considered by Taylor (1951, 1952) and by Hancock (1953); the present study utilizes and extends their findings but approaches the problem from a somewhat different angle. resistance, and consequently the transverse displacement (Vy) elicits reactions tangential and normal to the surface of the element. The latter force (δNy) has a component(δNysinθ) acting forward along the axis (xx ′) of propulsion; it is this component which counteracts the retarding effect of all the forces acting tangentially to the surface.
Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function
Tập 206 Số 12 - Trang 2049-2057 - 2003
John E. Wilson
SUMMARY The first step in metabolism of glucose (Glc) is usually phosphorylation,catalyzed by hexokinase. However, the Glc-6-P produced can then enter one or more of several alternative pathways. Selective expression of isozymic forms of hexokinase, differing in catalytic and regulatory properties as well as subcellular localization, is likely to be an important factor in determining the pattern of Glc metabolism in mammalian tissues/cells. Despite their overall structural similarity, the Type I, Type II and Type III isozymes differ in important respects. All three isozymes are inhibited by the product,Glc-6-P, but with the Type I isozyme, this inhibition is antagonized by PI, whereas with the Type II and Type III isozymes, Piactually causes additional inhibition. Reciprocal changes in intracellular levels of Glc-6-P and Pi are closely associated with cellular energy status, and it is proposed that the response of the Type I isozyme to these effectors adapts it for catabolic function, introducing Glc into glycolytic metabolism for energy production. In contrast, the Type II, and probably the Type III, isozymes are suggested to serve primarily anabolic functions, e.g. to provide Glc-6-P for glycogen synthesis or metabolism via the pentose phosphate pathway for lipid synthesis. Type I hexokinase binds to mitochondria through interaction with porin, the protein that forms channels through which metabolites traverse the outer mitochondrial membrane. Several experimental approaches have led to the conclusion that the Type I isozyme, bound to actively phosphorylating mitochondria, selectively uses intramitochondrial ATP as substrate. Such interactions are thought to facilitate coordination of the introduction of Glc into glycolysis, via the hexokinase reaction, with the terminal oxidative stages of Glc metabolism occurring in the mitochondria, thus ensuring an overall rate of Glc metabolism commensurate with cellular energy demands and avoiding excessive production of lactate. The Type II isozyme also binds to mitochondria. Whether such coupling occurs with mitochondrially bound Type II hexokinase in normal tissues, and how it might be related to the proposed anabolic role of this isozyme, remain to be determined. The Type III isozyme lacks the hydrophobic N-terminal sequence known to be critical for binding of the Type I and Type II isozymes to mitochondria. Immunolocalization studies have indicated that, in many cell types, the Type III has a perinuclear localization, the possible metabolic consequences of which remain unclear.
The role of gibberellin signalling in plant responses to abiotic stress
Tập 217 Số 1 - Trang 67-75 - 2014
Ellen Colebrook, Stephen G. Thomas, Andrew L. Phillips, Peter Hedden
Plant hormones are small molecules that regulate plant growth and development, as well as responses to changing environmental conditions. By modifying the production, distribution or signal transduction of these hormones, plants are able to regulate and coordinate both growth and/or stress tolerance to promote survival or escape from environmental stress. A central role for the gibberellin (GA) class of growth hormones in the response to abiotic stress is becoming increasingly evident. Reduction of GA levels and signalling has been shown to contribute to plant growth restriction on exposure to several stresses, including cold, salt and osmotic stress. Conversely, increased GA biosynthesis and signalling promote growth in plant escape responses to shading and submergence. In several cases, GA signalling has also been linked to stress tolerance. The transcriptional regulation of GA metabolism appears to be a major point of regulation of the GA pathway, while emerging evidence for interaction of the GA-signalling molecule DELLA with components of the signalling pathway for the stress hormone jasmonic acid suggests additional mechanisms by which GA signalling may integrate multiple hormone signalling pathways in the response to stress. Here, we review the evidence for the role of GA in these processes, and the regulation of the GA signalling pathway on exposure to abiotic stress. The potential mechanisms by which GA signalling modulates stress tolerance are also discussed.
The Technique of Free Skin Grafting in Mammals
Tập 28 Số 3 - Trang 385-402 - 1951
R. E. Billingham, P. B. Medawar
ABSTRACT Methods are described for the execution of free skin grafts in rabbits, guinea-pigs and mice. Much of the work in which use has been made of the techniques described above has been generously supported over a period of years by the Department of Plastic Surgery, University of Oxford (Prof. T. Pomfret Kilner, F.R.C.S.).
The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight
Tập 205 Số 8 - Trang 1087-1096 - 2002
Sanjay P. Sane, Michael H. Dickinson
SUMMARY We used a dynamically scaled model insect to measure the rotational forces produced by a flapping insect wing. A steadily translating wing was rotated at a range of constant angular velocities, and the resulting aerodynamic forces were measured using a sensor attached to the base of the wing. These instantaneous forces were compared with quasi-steady estimates based on translational force coefficients. Because translational and rotational velocities were constant, the wing inertia was negligible, and any difference between measured forces and estimates based on translational force coefficients could be attributed to the aerodynamic effects of wing rotation. By factoring out the geometry and kinematics of the wings from the rotational forces, we determined rotational force coefficients for a range of angular velocities and different axes of rotation. The measured coefficients were compared with a mathematical model developed for two-dimensional motions in inviscid fluids, which we adapted to the three-dimensional case using blade element theory. As predicted by theory, the rotational coefficient varied linearly with the position of the rotational axis for all angular velocities measured. The coefficient also, however, varied with angular velocity, in contrast to theoretical predictions. Using the measured rotational coefficients, we modified a standard quasi-steady model of insect flight to include rotational forces, translational forces and the added mass inertia. The revised model predicts the time course of force generation for several different patterns of flapping kinematics more accurately than a model based solely on translational force coefficients. By subtracting the improved quasi-steady estimates from the measured forces, we isolated the aerodynamic forces due to wake capture.
The control of flight force by a flapping wing: lift and drag production
Tập 204 Số 15 - Trang 2607-2626 - 2001
Sanjay P. Sane, Michael H. Dickinson
SUMMARYWe used a dynamically scaled mechanical model of the fruit fly Drosophila melanogaster to study how changes in wing kinematics influence the production of unsteady aerodynamic forces in insect flight. We examined 191 separate sets of kinematic patterns that differed with respect to stroke amplitude, angle of attack, flip timing, flip duration and the shape and magnitude of stroke deviation. Instantaneous aerodynamic forces were measured using a two-dimensional force sensor mounted at the base of the wing. The influence of unsteady rotational effects was assessed by comparing the time course of measured forces with that of corresponding translational quasi-steady estimates. For each pattern, we also calculated mean stroke-averaged values of the force coefficients and an estimate of profile power. The results of this analysis may be divided into four main points.(i) For a short, symmetrical wing flip, mean lift was optimized by a stroke amplitude of 180° and an angle of attack of 50°. At all stroke amplitudes, mean drag increased monotonically with increasing angle of attack. Translational quasi-steady predictions better matched the measured values at high stroke amplitude than at low stroke amplitude. This discrepancy was due to the increasing importance of rotational mechanisms in kinematic patterns with low stroke amplitude.(ii) For a 180° stroke amplitude and a 45° angle of attack, lift was maximized by short-duration flips occurring just slightly in advance of stroke reversal. Symmetrical rotations produced similarly high performance. Wing rotation that occurred after stroke reversal, however, produced very low mean lift.(iii) The production of aerodynamic forces was sensitive to changes in the magnitude of the wing’s deviation from the mean stroke plane (stroke deviation) as well as to the actual shape of the wing tip trajectory. However, in all examples, stroke deviation lowered aerodynamic performance relative to the no deviation case. This attenuation was due, in part, to a trade-off between lift and a radially directed component of total aerodynamic force. Thus, while we found no evidence that stroke deviation can augment lift, it nevertheless may be used to modulate forces on the two wings. Thus, insects might use such changes in wing kinematics during steering maneuvers to generate appropriate force moments.(iv) While quasi-steady estimates failed to capture the time course of measured lift for nearly all kinematic patterns, they did predict with reasonable accuracy stroke-averaged values for the mean lift coefficient. However, quasi-steady estimates grossly underestimated the magnitude of the mean drag coefficient under all conditions. This discrepancy was due to the contribution of rotational effects that steady-state estimates do not capture. This result suggests that many prior estimates of mechanical power based on wing kinematics may have been grossly underestimated.
“Tho’ she kneel’d in that place where they grew…” The uses and origins of primate colour vision
Tập 146 Số 1 - Trang 21-38 - 1989
J. D. Mollon
ABSTRACT The disabilities experienced by colour-blind people show us the biological advantages of colour vision in detecting targets, in segregating the visual field and in identifying particular objects or states. Human dichromats have especial difficulty in detecting coloured fruit against dappled foliage that varies randomly in luminosity; it is suggested that yellow and orange tropical fruits have co-evolved with the trichromatic colour vision of Old World monkeys. It is argued that the colour vision of man and of the Old World monkeys depends on two subsystems that remain parallel and independent at early stages of the visual pathway. The primordial subsystem, which is shared with most mammals, depends on a comparison of the rates of quantum catch in the short-and middle-wave cones; this system exists almost exclusively for colour vision, although the chromatic signals carry with them a local sign that allows them to sustain several of the functions of spatiochromatic vision. The second subsystem arose from the phylogenetically recent duplication of a gene on the X-chromosome, and depends on a comparison of the rates of quantum catch in the long-and middle-wave receptors. At the early stages of the visual pathway, this chromatic information is carried by a channel that is also sensitive to spatial contrast. The New World monkeys have taken a different route to trichromacy: in species that are basically dichromatic, heterozygous females gain trichromacy as a result of X-chromosome inactivation, which ensures that different photopigments are expressed in two subsets of retinal photoreceptor.