Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses

Journal of Experimental Biology - Tập 208 Số 15 - Trang 2819-2830 - 2005
Paul H. Yancey1
1Biology Department, Whitman College, Walla Walla, WA 99362, USA

Tóm tắt

SUMMARY

Organic osmolytes are small solutes used by cells of numerous water-stressed organisms and tissues to maintain cell volume. Similar compounds are accumulated by some organisms in anhydrobiotic, thermal and possibly pressure stresses. These solutes are amino acids and derivatives,polyols and sugars, methylamines, methylsulfonium compounds and urea. Except for urea, they are often called `compatible solutes', a term indicating lack of perturbing effects on cellular macromolecules and implying interchangeability. However, these features may not always exist, for three reasons. First, some of these solutes may have unique protective metabolic roles, such as acting as antioxidants (e.g. polyols, taurine, hypotaurine),providing redox balance (e.g. glycerol) and detoxifying sulfide (hypotaurine in animals at hydrothermal vents and seeps). Second, some of these solutes stabilize macromolecules and counteract perturbants in non-interchangeable ways. Methylamines [e.g. trimethylamine N-oxide (TMAO)] can enhance protein folding and ligand binding and counteract perturbations by urea (e.g. in elasmobranchs and mammalian kidney), inorganic ions, and hydrostatic pressure in deep-sea animals. Trehalose and proline in overwintering insects stabilize membranes at subzero temperatures. Trehalose in insects and yeast,and anionic polyols in microorganisms around hydrothermal vents, can protect proteins from denaturation by high temperatures. Third, stabilizing solutes appear to be used in nature only to counteract perturbants of macromolecules,perhaps because stabilization is detrimental in the absence of perturbation. Some of these solutes have applications in biotechnology, agriculture and medicine, including in vitro rescue of the misfolded protein of cystic fibrosis. However, caution is warranted if high levels cause overstabilization of proteins.

Từ khóa


Tài liệu tham khảo

Ansell, R., Granath, K., Hohmann, S., Thevelein, J. M. and Adler, L. (1997). The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. EMBO J.16,2179-2187.

Arakawa, T., Carpenter, J. F., Kita, Y. A. and Crowe, J. H.(1990). The basis for toxicity of certain cryoprotectants: an hypothesis. Cryobiology27,401-415.

Aruoma, O. I., Halliwell, B., Hoey, B. M. and Butler, J.(1988). The antioxidant action of taurine, hypotaurine and their metabolic precursors. Biochem. J.256,251-255.

Baust, J. G. and Lee, R. E. (1982). Environmental triggers to cryoprotectant modulation in separate populations of the gall fly, Eurosta solidaginis (Fitch). J. Insect Physiol.28,431-436.

Bennion, B. J. and Daggett, V. (2004). Counteraction of urea-induced protein denaturation by trimethylamine N-oxide: A chemical chaperone at atomic resolution. Proc. Natl. Acad. Sci. USA101,6433-6438.

Bennion, B. J., DeMarco, M. L. and Daggett, V.(2004). Preventing misfolding of the prion protein by trimethylamine N-oxide. Biochemistry43,12955-12963.

Bolen, D. W. and Baskakov, I. V. (2001). The osmophobic effect: natural selection of a thermodynamic force in protein folding. J. Mol. Biol.310,955-963.

Brown, A. and Simpson, J. (1972). Water relations of sugar-tolerant yeasts: the role of intracellular polyols. J. Gen. Microbiol. 72,589-591.

Chen, Q. and Haddad, G. G. (2004). Role of trehalose phosphate synthase and trehalose during hypoxia: from flies to mammal. J. Exp. Biol.207,3125-3129.

Crowe, J. H., Carpenter, J. F. and Crowe, L. M.(1998). The role of vitrification in anhydrobiosis. Annu. Rev. Physiol.60,73-103.

Cushman, J. C. (2001). Osmoregulation in plants: implications for agriculture. Amer. Zool.41,758-769.

Devlin, G. L., Parfrey, H., Tew, D. J., Lomas, D. A. and Bottomley, S. P. (2001). Prevention of polymerisation of M and Z α1-antitrypsin (α 1-AT) with trimethylamine N-oxide. Implications for the treatment of α1-AT deficiency. Am. J. Resp. Cell. Mol. Biol.24,727-732.

Faria, T. Q., Lima, J. C., Bastos, M., Macanita, A. L. and Santos, H. (2004). Protein stabilization by osmolytes from hyperthermophiles. Effect of mannosylglycerate on the thermal unfolding of recombinant Nuclease A from Staphylococcus aureus studied by picosecond time-resolved fluorescence and calorimetry. J. Biol. Chem.279,48680-48691.

Fiess, J. C., Hom, J. R., Hudson, H. A., Kato, C. and Yancey, P. H. (2002). Phosphodiester amine, taurine and derivatives, and other osmolytes in vesicomyid bivalves: correlations with depth and symbiont metabolism. Cahiers Biol. Mar.43,337-340.

Fuery, C. J., Attwood, P. V., Withers, P. C., Yancey, P. H.,Baldwin, J. and Guppy, M. (1997). Effects of urea on M4-lactate dehydrogenase from elasmobranchs and urea-accumulating Australian desert frogs. Comp. Biochem. Physiol. B117,143-150.

Gilles, R. (1997). `Compensatory' organic osmolytes in high osmolarity and dehydration stresses: history and perspectives. Comp. Biochem. Physiol. A117,279-290.

Gillett, M. B., Suko, J. R., Santoso, F. O. and Yancey, P. H. (1997). Elevated levels of trimethylamine oxide in muscles of deep-sea gadiform teleosts: a high-pressure adaptation? J. Exp. Zool.279,386-391.

Gluick, T. C. and Yadav, S. (2003). Trimethylamine N-oxide stabilises RNA tertiary structure and attenuates the denaturating effects of urea. J. Am. Chem. Soc.125,4418-4419.

Grundy, J. E. and Storey, K. B. (1994). Urea and salt effects on enzymes from estivating and non-estivating amphibians. Mol. Cell. Biochem.131,9-17.

Hanson, A. D. and Burnet, M. (1994). Evolution and metabolic engineering of osmoprotectant accumulation in higher plants. In Cell Biology: Biochemical and Cellular Mechanisms of Stress Tolerance in Plants, NATO ASI Series H. (ed. J. H. Cherry ed),pp. 291-302. Berlin: Springer.

Hanson, A. D., Rathinasabapathi, B., Chamberlin, B. and Gage, D. A. (1991). Comparative physiological evidence thatβ-alaninebetaine and choline-0-sulfate act as compatible osmolytes in halophytic Limonium species. Plant Physiol. 97,1199-1205.

Hanson, A. D., Rathinasabapathi, B., Rivoal, J., Burnet, M.,Dillon, M. O. and Gage, D. A. (1994). Osmoprotective compounds in the Plumbaginaceae: A natural experiment in metabolic engineering of stress tolerance. Proc. Natl. Acad. Sci. USA91,306-310.

Howard, M., Fischer, H., Roux, J., Santos, B. C., Gullans, S. R., Yancey, P. H. and Welch, W. J. (2003). Mammalian osmolytes and s-nitrosoglutathione promote ΔF508 cystic fibrosis transmembrane conductance regulator (CFTR) protein maturation and function. J. Biol. Chem. 278,35159-35167.

Kaye, J. Z. and Baross, J. A. (2004). Synchronous effects of temperature, hydrostatic pressure, and salinity on growth, phospholipid profiles, and protein patterns of four Halomonasspecies isolated from deep-sea hydrothermal-vent and sea surface environments. Appl. Envir. Microbiol.70,6220-6229.

Kelly, R. H. and Yancey, P. H. (1999). High contents of trimethylamine oxide correlating with depth in deep-sea teleost fishes, skates, and decapod crustaceans. Biol. Bull. 196, 18-25.

Kumar, R., Serrette, J. M. and Thompson, E. B.(2005). Osmolyte-induced folding enhances tryptic enzyme activity. Arch. Biochem. Biophys. 436, 78-82.

Kültz, D. and Chakravarty, D. (2001). Hyperosmolality in the form of elevated NaCl but not urea causes DNA damage in murine kidney cells. Proc. Natl. Acad. Sci. USA98,1999-2004.

Martin, D. D., Ciulla, R. A. and Roberts, M. F.(1999). Osmoadaptation in archaea. Appl. Env. Microbiol.65,1815-1825.

Martin, D. D., Bartlett, D. H. and Roberts, M. F.(2002). Solute accumulation in the deep-sea bacterium Photobacterium profundum. Extremophiles6, 507-514.

Miller, T. J., Hanson, R. D. and Yancey, P. H.(2000). Developmental changes in organic osmolytes in prenatal and postnatal rat tissues. Comp. Biochem. Physiol.125, 45-56.

Moriyama, T., Garcia-Perez, A., Olson, A. D. and Burg, M. B.(1991). Intracellular betaine substitutes for sorbitol in protecting renal medullary cells from hypertonicity.Am. J. Physiol.260,F494-F497.

Neufeld, D. S. and Leader, J. P. (1998). Freezing survival by isolated Malpighian tubules of the New Zealand alpine weta Hemideina maori. J. Exp. Biol.201,227-236.

Olson, J. E., Kreisman, N. R., Lim, J., Hoffman, B., Schelble,D. and Leasure, J. (2003). Taurine and cellular volume regulation in the hippocampus. In Taurine 5 (ed. B. Lombardini, S. Schaffer and J. Azuma), pp. 107-114. New York: Kluwer Plenum.

Orthen, B., Popp, M. and Smirnoff, N. (1994). Hydroxyl radical scavenging properties of cyclitols. Proc. R. Soc. Edinburgh Sect. B102,269-272.

Ortiz-Costa, S., Sorenson, M. M. and Sola-Penna, M.(2002). Counteracting effects of urea and methylamines in function and structure of skeletal muscle myosin. Arch. Biochem. Biophys.408,272-278.

Peterson, D. P., Murphy, K. M., Ursino, R., Streeter, K. and Yancey, P. H. (1992). Effects of dietary protein and salt on rat renal osmolytes: co-variation in urea and GPC contents. Am. J. Physiol.263,F594-F600.

Pollard, A. and Wyn Jones, R. G. (1979). Enzyme activities in concentrated solutions of glycinebetaine and other solutes. Planta144,291-298.

Pruski, A. M., Fiala-Médioni, A., Fisher, C. R. and Colomines, J. C. (2000a). Composition of free amino acids and related compounds in invertebrates with symbiotic bacteria at hydrocarbon seeps in the Gulf of Mexico. Mar. Biol.136,411-420.

Pruski, A. M., Fiala-Médioni, A., Prodon, R. and Colomines, J. C. (2000b). Thiotaurine is a biomarker of sulfide-based symbiosis in deep-sea bivalves. Limnol. Oceanogr.45,1860-1867.

Raymond, J. A. (1992). Glycerol is a colligative antifreeze in some northern fishes, J. Exp. Zool. 262,347-352.

Rohr, J. M., Hong, T., Truong, S. and Yancey, P. H.(1999). Effects of ascorbic acid, aminoguanidine, sorbinil and zopolrestat on sorbitol and betaine contents in cultured rat renal cells. Exp. Biol. Online4,3.

Rosenberg, N. B., Lee, R. W. and Yancey, P. H.(2003). Adaptation to environmental stresses with osmolytes:possible roles for betaine, hypotaurine and thiotaurine in gastropods from hydrothermal vents. Comp. Biochem. Physiol.134, S120.

Rudolph, A. S. and Crowe, J. H. (1985). Membrane stabilization during freezing: the role of two natural cryoprotectants, trehalose and proline. Cryobiology22,367-377.

Russo, A. T., Rosgen, J. and Bolen, D. W.(2002). Osmolyte effects on kinetics of FKBP12 C22A folding coupled with prolyl isomerisation. J. Mol. Biol. 330,851-866.

Saad-Nehme, J., Silva, J. L. and Meyer-Fernandes, J. R.(2001). Osmolytes protect mitochondrial F0F1-ATPase complex against pressure inactivation. Biochim. Biophys. Acta1546,164-170.

Santos, H. and da Costa, M. S. (2002). Compatible solutes of organisms that live in hot saline environments. Environ. Microbiol.4,501-509.

Schaffer, S., Azuma, J., Takahashi, K. and Mozaffari, M.(2003). Why is taurine cytoprotective? In Taurine 5 (ed. B. Lombardini, S. Schaffer and J. Azuma), pp.307-321. New York: Kluwer Plenum.

Seibel, B. A. and Walsh, P. J. (2002). Trimethylamine oxide accumulation in marine animals: relationship to acylglycerol storage. J. Exp. Biol. 205,297-306.

Setchell, B. P., Sanchez-Partida, L. G. and Chairussyuhur,A. (1993). Epididymal constituents and related substances in the storage of spermatozoa: a review. Repro. Fert. Devel. 5,601-612.

Shen, B., Hohman, S., Jensen, R. G. and Bohnert, H. J.(1999). Role of sugar alcohols in osmotic stress adaptation. Replacement of glycerol by mannitol and sorbitol in yeast. Plant Physiol.121,45-52.

Siebenaller, J. F. and Somero, G. N. (1989). Biochemical adaptation to the deep sea. CRC Crit. Rev. Aq. Sci.1,1-25.

Singer, M. A. and Lindquist, S. (1998). Thermotolerance in Saccharomyces cerevisiae: the yin and yang of trehalose. Trends Biotechnol. 16,460-468.

Storey, K. B. and Storey, J. M. (1996). Natural freezing survival in animals. Ann. Rev. Ecol. Syst. 27,365-386.

Sunda, W., Kieber, D. J., Kiene, R. P. and Huntsman, S.(2002). An antioxidant function for DMSP in marine algae. Nature418,317-320.

Timasheff, S. N. (1992). A physicochemical basis for the selection of osmolytes by nature. In Water and Life:A Comparative Analysis of Water Relationships at the Organismic, Cellular, and Molecular Levels (ed. G. N. Somero, C. B. Osmond and C. L. Bolis), pp. 70-84. Berlin:Springer-Verlag.

Trachtman, H., Yancey, P. H. and Gullans, S. R.(1995). Cerebral cell volume regulation during hypernatremia in developing rats. Brain Res.693,155-162.

Treberg, J. R. and Driedzic, W. R. (2002). Elevated levels of trimethylamine oxide in deep-sea fish: evidence for synthesis and intertissue physiological importance. J. Exp. Zool.293,39-45.

Tunnacliffe, A. and Lapinski, J. (2003). Resurrecting Van Leeuwenhoek's rotifers: a reappraisal of the role of disaccharides in anhydrobiosis. Philos. Trans. R. Soc. London Ser. B358,1755-1771.

Van Alstyne, K. L. and Houser, L. T. (2003). Dimethylsulfide release during macroinvertebrate grazing and its role as an activated chemical defense. Mar. Ecol. Prog. Ser.250,175-181.

Welch, W. J. and Brown, C. R. (1996). Influence of molecular and chemical chaperones on protein folding. Cell Stress Chaperones1,109-115.

Withers, P. C. and Guppy, M. (1996). Do Australian desert frogs co-accumulate counteracting solutes with urea during aestivation? J. Exp. Biol.199,1806-1816.

Wolfe, G. V. (2000). The chemical defense ecology of marine unicellular plankton: contraints, mechanisms, and impacts. Biol. Bull.198,225-244.

Wyn Jones, R. G., Storey, R., Leigh, R. A., Ahmad, N. and Pollard, A. (1977). A hypothesis on cytoplasmic osmoregulation. In Regulation of Cell Membrane Activities in Plants (ed. E. Marre and O. Ciferri), pp.121-136. Amsterdam: Elsevier Press.

Yancey, P. H. (2001). Protein, osmolytes and water stress. Am. Zool. 41,699-709.

Yancey, P. H. and Burg, M. B. (1990). Counteracting effects of urea and betaine on colony-forming efficiency of mammalian cells in culture. Am. J. Physiol. 258,R198-R204.

Yancey, P. H. and Siebenaller, J. F. (1999). Trimethylamine oxide stabilises teleost and mammalian lactate dehydrogenases against inactivation by hydrostatic pressure and trypsinolysis. J. Exp. Biol.202,3597-3603.

Yancey, P. H. and Somero, G. N. (1979). Counteraction of urea destabilization of protein structure by methylamine osmoregulatory compounds of elasmobranch fishes. Biochem. J.182,317-323.

Yancey, P. H., Clark, M. E., Hand, S. C., Bowlus, R. D. and Somero, G. N. (1982). Living with water stress: evolution of osmolyte systems. Science217,1214-1222.

Yancey, P. H., Burg, M. B. and Bagnasco, S. M.(1990a). Effects of NaCl, glucose and aldose reductase inhibitors on cloning efficiency of renal cells. Am. J. Physiol.258,C156-C163.

Yancey, P. H., Haner, R. G. and Freudenberger, T.(1990b). Effects of an aldose reductase inhibitor on osmotic effectors in rat renal medulla. Am. J. Physiol. 259,F733-F738.

Yancey, P. H., Blake, W. and Conley, J. (2002). Unusual organic osmolytes in deep-sea animals: Adaptations to hydrostatic pressure and other perturbants. Comp. Biochem. Physiol. A133,667-676.

Yancey, P. H., Rhea, M. D., Kemp, K. M. and Bailey, D. M.(2004). Trimethylamine oxide, betaine and other osmolytes in deep-sea animals: depth trends and effects on enzymes under hydrostatic pressure. Cell. Mol. Biol. 50,371-376.

Yin, M., Palmer, H. R., Fyfe-Johnson, A. L., Bedford, J. J.,Smith, R. A. and Yancey, P. H. (2000). Hypotaurine,N-methyltaurine, taurine, and glycine betaine as dominant osmolytes of vestimentiferan tubeworms from hydrothermal vents and cold seeps. Phys. Biochem. Zool.73,629-637.