The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization
Tóm tắt
Life is the most complex physical phenomenon in the Universe, manifesting an extraordinary diversity of form and function over an enormous scale from the largest animals and plants to the smallest microbes and subcellular units. Despite this many of its most fundamental and complex phenomena scale with size in a surprisingly simple fashion. For example, metabolic rate scales as the 3/4-power of mass over 27 orders of magnitude, from molecular and intracellular levels up to the largest organisms. Similarly, time-scales (such as lifespans and growth rates) and sizes (such as bacterial genome lengths,tree heights and mitochondrial densities) scale with exponents that are typically simple powers of 1/4. The universality and simplicity of these relationships suggest that fundamental universal principles underly much of the coarse-grained generic structure and organisation of living systems. We have proposed a set of principles based on the observation that almost all life is sustained by hierarchical branching networks, which we assume have invariant terminal units, are space-filling and are optimised by the process of natural selection. We show how these general constraints explain quarter power scaling and lead to a quantitative, predictive theory that captures many of the essential features of diverse biological systems. Examples considered include animal circulatory systems, plant vascular systems, growth,mitochondrial densities, and the concept of a universal molecular clock. Temperature considerations, dimensionality and the role of invariants are discussed. Criticisms and controversies associated with this approach are also addressed.
Từ khóa
Tài liệu tham khảo
Allen, A. P., Gillooly, J. and Brown, J. H.(2005). Linking metabolism to the global carbon cycle. Funct. Ecol. (in press).
Banavar, J. R., Maritan, A. and Rinaldo, A.(1999). Size and form in efficient transportation networks. Nature399,130-132.
Bartels, H. (1982). Metabolic rate of mammals equals the 0.75 power of their body weight. Exp. Biol. Med.7,1-11.
Brody, S. (1945). Bioenergetics and Growth. New York: Van Nostrand Reinhold.
Calder, W. A. (1984). Size, Function and Life History. Cambridge: Harvard University Press.
Caro, C. G., Pedley, T. J., Schroter, R. C. and Seed, W. A.(1978). The Mechanics of Circulation. Oxford: Oxford University Press.
Darveau, C. A., Suarez, R. K., Andrews, R. D. and Hochachka, P. W. (2002). Allometric cascade as a unifying principle of body mass effects on metabolism. Nature417,166-170.
Dodds, P. S., Rothman, D. H. and Weitz, J. S.(2001). Re-examination of the `3/4-law' of metabolism. J. Theor. Biol.209,9-27.
Else, P. L., Brand, M. D., Turner, N. and Hulbert, A. J.(2004). Respiration rate of hepatocytes varies with body mass in birds. J. Exp. Biol.207,2305-2311.
Enquist, B. J. and Niklas, K. J. (2001). Invariant scaling relations across tree-dominated communities. Nature410,655-660.
Enquist, B. J., West, G. B., Charnov, E. L. and Brown, J. H.(1999). Allometric scaling of production and life-history variation in vascular plants. Nature401,907-911.
Ernest, S. K. M., Enquist, B. J., Brown, J. H., Charnov, E. L.,Gillooly, J. F., Savage, V., White, E. P., Smith, F. A., Hadly, E. A.,Haskell, J. P. et al. (2003). Thermodynamic and metabolic effects on the scaling of production and population energy use. Ecol. Lett.6,990-995.
Feldman, H. A. and McMahon, T. A. (1983). The 3/4 mass exponent for energy metabolism is not a statistical artifact. Respir. Physiol.52,149-163.
Gillooly, J. F., Allen, A. P., West, G. B. and Brown, J. H.(2005). The rate of DNA evolution: Effects of body size and temperature on the molecular clock. Proc. Natl. Acad. Sci. USA102,140-145.
Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. and Charnov, E. L. (2001). Effects of size and temperature on metabolic rate. Science293,2248-2251.
Gillooly, J. F., Charnov, E. L., West, G. B., Savage, V. M. and Brown, J. H. (2002). Effects of size and temperature on developmental time. Nature417, 70-73.
Greenwalt, C. H. (1975). The flight of birds:the significant dimension, their departure from the requirements for dimensional similarity, and the effect on flight aerodynamics of that departure. Trans. Am. Phil. Soc. (new series)65, 1-67.
Guiot, C., Degiorgis, P. G., Delsanto, P. P., Gabriele, P. and Deisboeck, T. S. (2003). Does tumor growth follow a`universal law'? J. Theor. Biol.225,147-151.
Heusner, A. A. (1982). Energy-metabolism and body size. 1. Is the 0.75 mass exponent of Kleibers equation a statistical artifact. Respir. Physiol.48, 1-12.
Hodgkin, A. L. and Huxley, A. F. (1952). The dual effect of membrane potential on sodium conductance in the giant axiom of Loligo. J. Physiol.116,497-506.
Kleiber, M. (1975). The Fire of Life. Malabar: Krieger Publishing Company.
Landau, L. D. and Lifshitz, E. M. (1978). Fluid Mechanics. Oxford: Pergamon Press.
Lindstedt, S. L. and Calder, W. A. (1981). Body size, physiological time, and longevity of homeothermic animals. Q. Rev. Biol.56,1-16.
Mandelbrot, B. B. (1982). The Fractal Geometry of Nature. San Francisco: W. H. Freeman.
Marion, J. B. and Thornton, S. T. (1988). Classical Dynamics of Particles and Systems. San Diego: Harcourt Brace Jovanovich.
McMahon, T. A. and Bonner, J. T. (1983). On Size and Life. New York: Scientific American Library.
Nagy, K. A., Girard, I. A. and Brown, T. K.(1999). Energetics of free-ranging mammals, reptiles and birds. Annu. Rev. Nutr.19,247-277.
Niklas, K. J. (1994). Plant Allometry, The Scaling of Form and Process. Chicago: University of Chicago Press.
Peters, R. H. (1986). The Ecological Implications of Body Size. Cambridge: Cambridge University Press.
Savage, V. M., Gillooly, J. F., Brown, J. H., West, G. B. and Charnov, E. L. (2004a). Effects of body size and temperature on population growth. Am. Nat.163,E429-E441.
Savage, V. M., Gillooly, J. F., Woodruff, W. H., West, G. B.,Allen, A. P., Enquist, B. J. and Brown, J. H. (2004b). The predominance of quarter-power scaling in biology. Funct. Ecol.18,257-282.
Schmidt-Nielsen, K. (1984). Why is Animal Size So Important? Cambridge: Cambridge University Press.
Scholander, P. F. and Schevill, W. E. (1955). Countercurrent vascular heat exchange in the fins of whales. J. Appl. Physiol.8,279-282.
Scholander, P. F., Walters, V., Hock, R. and Irving, L.(1950). Body insulation in some artic and tropical mammals and birds. Biol. Bull.99,225-236.
Suarez, R. K., Darveau, C. A. and Childress, J. J.(2004). Metabolic scaling: a many-splendoured thing. Comp. Biochem. Physiol.139B,531-541.
Taylor, C. R., Longworth, K. E. and Hoppeler, H.(1988). Matching O2 delivery to O2 demand in muscle: II. Allometric variation in energy demand. In Oxygen Transfer From Atmosphere to Tissues (ed. N. C. Gonzalez and M. R. Fedde), pp. 171-181. Oxford: Plenum.
Vogel, S. (1981). Life in Moving Fluids. Boston: Willard Grant Press.
Weibel, E. R., Bacigalupe, L. D., Schmitt, B. and Hoppeler,H. (2004). Allometric scaling of maximal metabolic rate in mammals: muscle aerobic capacity as determinant factor. Respir. Physiol. Neurobiol.140,115-132.
Weibel, E. R., Taylor, C. R. and Hoppeler, H.(1991). The concept of symmorphosis - a testable hypothesis of structure-function relationship. Proc. Natl. Acad. Sci. USA88,10357-10361.
West, G. B., Brown, J. H. and Enquist, B. J.(1997). A general model for the origin of allometric scaling laws in biology. Science276,122-126.
West, G. B., Brown, J. H. and Enquist, B. J.(1999a). The fourth dimension of life: Fractal geometry and allometric scaling of organisms. Science284,1677-1679.
West, G. B., Brown, J. H. and Enquist, B. J.(1999b). A general model for the structure and allometry of plant vascular systems. Nature400,664-667.
West, G. B., Brown, J. H. and Enquist, B. J.(2001). A general model for ontogenetic growth. Nature413,628-631.
West, G. B., Enquist, B. J. and Brown, J. H.(2002a). Ontogenetic growth - Modelling universality and scaling- Reply. Nature420,626-627.
West, G. B., Savage, V. M., Gillooly, J., Enquist, B. J.,Woodruff, W. H. and Brown, J. H. (2003). Why does metabolic rate scale with body size? Nature421, 713.
West, G. B., Woodruff, W. H. and Brown, J. H.(2002b). Allometric scaling of metabolic rate from molecules and mitochondria to cells and mammals. Proc. Natl. Acad. Sci. USA99,2473-2478.
White, C. R. and Seymour, R. S. (2003). Mammalian basal metabolic rate is proportional to body mass(2/3). Proc. Natl. Acad. Sci. USA100,4046-4049.