The 2011 Report on Dietary Reference Intakes for Calcium and Vitamin D from the Institute of Medicine: What Clinicians Need to Know Tập 96 Số 1 - Trang 53-58 - 2011
A. Catharine Ross, JoAnn E. Manson, Steven A. Abrams, John F. Aloia, Patsy M. Brannon, Steven K. Clinton, Ramón Durazo-Arvizú, John C. Gallagher, Richard L. Gallo, Glenville Jones, Christopher S. Kovacs, Susan T. Mayne, Clifford J. Rosen, Sue A. Shapses
Quantitative Insulin Sensitivity Check Index: A Simple, Accurate Method for Assessing Insulin Sensitivity In Humans Tập 85 Số 7 - Trang 2402-2410 - 2000
Amy K. Katz, Sridhar Nambi, Kieren J. Mather, Alain Baron, Dean Follmann, Gail W. Sullivan, Michael J. Quon
Insulin resistance plays an important role in the pathophysiology of diabetes and is associated with obesity and other cardiovascular risk factors. The “gold standard” glucose clamp and minimal model analysis are two established methods for determining insulin sensitivity in vivo, but neither is easily implemented in large studies. Thus, it is of interest to develop a simple, accurate method for assessing insulin sensitivity that is useful for clinical investigations. We performed both hyperinsulinemic isoglycemic glucose clamp and insulin-modified frequently sampled iv glucose tolerance tests on 28 non-obese, 13 obese, and 15 type 2 diabetic subjects. We obtained correlations between indexes of insulin sensitivity from glucose clamp studies (SIClamp) and minimal model analysis (SIMM) that were comparable to previous reports (r = 0.57). We performed a sensitivity analysis on our data and discovered that physiological steady state values [i.e. fasting insulin (I0) and glucose (G0)] contain critical information about insulin sensitivity. We defined a quantitative insulin sensitivity check index (QUICKI = 1/[log(I0) + log(G0)]) that has substantially better correlation with SIClamp (r = 0.78) than the correlation we observed between SIMM and SIClamp. Moreover, we observed a comparable overall correlation between QUICKI and SIClamp in a totally independent group of 21 obese and 14 nonobese subjects from another institution. We conclude that QUICKI is an index of insulin sensitivity obtained from a fasting blood sample that may be useful for clinical research.
A Critical Evaluation of Simple Methods for the Estimation of Free Testosterone in Serum Tập 84 Số 10 - Trang 3666-3672 - 1999
Alex Vermeulen, L. Verdonck, Jean‐Marc Kaufman
Abstract
The free and nonspecifically bound plasma hormone levels generally reflect the clinical situation more accurately than total plasma hormone levels. Hence, it is important to have reliable indexes of these fractions. The apparent free testosterone (T) concentration obtained by equilibrium dialysis (AFTC) as well as the fraction of serum T not precipitated by 50% ammonium sulfate concentration (non-SHBG-T; SHBG, sex hormone-binding globulin), often referred to as bioavailable T, appear to represent reliable indexes of biologically readily available T, but are not well suited for clinical routine, being too time consuming. Several other parameters have been used without complete validation, however: direct immunoassay of free T with a labeled T analog (aFT), calculation of free T (FT) from total T and immunoassayed SHBG concentrations (iSHBG), and the free androgen index (FAI = the ratio 100T/iSHBG). In the view of substantial discrepancies in the literature concerning the free or bioavailable T levels, we compared AFTC, FT, aFT, FAI, and non-SHBG-T levels in a large number of sera with SHBG capacities varying from low, as in hirsute women, to extremely high as in hyperthyroidism. All these indexes of bioavailable T correlated significantly with the AFTC concentration; AFTC and FT values were almost identical under all conditions studied, except during pregnancy. Values for aFT, however, were only a fraction of either AFTC or FT, the fraction varying as a function of SHBG levels. Also, the FAI/AFTC ratio varied as a function of the SHBG levels, and hence, neither aFT nor FAI is a reliable index of bioavailable T.
The FT value, obtained by calculation from T and SHBG as determined by immunoassay, appears to be a rapid, simple, and reliable index of bioavailable T, comparable to AFTC and suitable for clinical routine, except in pregnancy. During pregnancy, estradiol occupies a substantial part of SHBG-binding sites, so that SHBG as determined by immunoassay overestimates the actual binding capacity, which in pregnancy sera results in calculated FT values that are lower than AFTC. The nonspecifically bound T, calculated from FT, correlated highly significantly with and was almost identical to the values of non-SHBG-T obtained by ammonium sulfate precipitation, testifying to the clinical value of FT calculated from iSHBG.