JBIC Journal of Biological Inorganic Chemistry
Công bố khoa học tiêu biểu
* Dữ liệu chỉ mang tính chất tham khảo
Sắp xếp:
Mass-spectrometric characterization of cisplatin binding sites on native and denatured ubiquitin
JBIC Journal of Biological Inorganic Chemistry - Tập 16 - Trang 633-639 - 2011
Because interactions between cisplatin and plasma proteins contribute to drug efficacy and side effects, it is important to understand both the binding sites of cisplatin on the proteins and the formation of protein–cisplatin adducts. Previous results suggest that cisplatin preferentially binds to residues on the protein surface. The present work employed electrospray ionization mass spectrometry (MS) to identify such sites on both native and denatured ubiquitin (Ub). Fourier transform (FT) MS and tandem MS (MS/MS and MS3) enable analysis of Ub–cisplatin adduct digests to locate specific cisplatin binding sites. Results indicate that there are three such binding sites, i.e., M1, T12 and T14, and D32, on native Ub. The intensity of the relevant peaks in the FT-MS spectrum of the native Ub adduct digest demonstrates that residues T12 and T14 comprise the primary cisplatin binding site under the native conditions rather than residue M1 as reported in previous research studies. It is found in the present work, however, that M1 is the primary binding site on denatured Ub. Comparison of cisplatin binding sites on native and denatured Ub in this research demonstrates that the conformation of a protein significantly influences the preference of cisplatin for specific binding sites.
Correction to: Protein-bound calcium phosphate in uremic rat serum: a quantitative study
JBIC Journal of Biological Inorganic Chemistry - Tập 25 - Trang 1065-1066 - 2020
In the original article, few equations and units were published incorrectly.
Design and synthesis of N-hydroxyalkyl substituted deferiprone: a kind of iron chelating agents for Parkinson's disease chelation therapy strategy
JBIC Journal of Biological Inorganic Chemistry - - 2021
The blood–brain barrier (BBB) permeability of molecules needs to meet stringent requirements of Lipinski’s rule, which pose a difficulty for the rational design of efficient chelating agents for Parkinson's disease chelation therapy. Therefore, the iron chelators employed N-aliphatic alcohols modification of deferiprone were reasonably designed in this work. The chelators not only meet Lipinski’s rule for BBB permeability, but also ensure the iron affinity. The results of solution thermodynamics demonstrated that the pFe3+ value of N-hydroxyalkyl substituted deferiprone is between 19.20 and 19.36, which is comparable to that of clinical deferiprone. The results of 2,2-diphenyl-1-picrylhydrazyl radical scavenging assays indicated that the N-hydroxyalkyl substituted deferiprone also possesses similar radical scavenging ability in comparison to deferiprone. Meanwhile, the Cell Counting Kit-8 assays of neuron-like rat pheochromocytoma cell-line demonstrated that the N-hydroxyalkyl substituted deferiprone exhibits extremely low cytotoxicity and excellent H2O2-induced oxidative stress protection effect. These results indicated that N-hydroxyalkyl substituted deferiprone has potential application prospects as chelating agents for Parkinson's disease chelation therapy strategy.
Characteristics of the Isu1 C-terminus in relation to [2Fe-2S] cluster assembly and ISCU Myopathy
JBIC Journal of Biological Inorganic Chemistry - Tập 27 - Trang 759-773 - 2022
Mitochondrial [2Fe-2S] cluster biosynthesis is driven by the coordinated activities of the Iron–Sulfur Cluster (ISC) pathway protein machinery. Within the ISC machinery, the protein that provides a structural scaffold on which [2Fe-2S] clusters are assembled is the ISCU protein in humans; this protein is referred to as the “Scaffold” protein. Truncation of the C-terminal portion of ISCU causes the fatal disease “ISCU Myopathy”, which exhibits phenotypes of reduced Fe-S cluster assembly in cells. In this report, the yeast ISCU ortholog “Isu1” has been characterized to gain a better understanding of the role of the scaffold protein in relation to [2Fe-2S] assembly and ISCU Myopathy. Here we explored the biophysical characteristics of the C-terminal region of Isu1, the segment of the protein that is truncated on the human ortholog during the disease ISCU Myopathy. We characterized the role of this region in relation to iron binding, protein stability, assembly of the ISC multiprotein complex required to accomplish Fe-S cluster assembly, and finally on overall cell viability. We determined the Isu1 C-terminus is essential for the completion of the Fe-S cluster assembly but serves a function independent of protein iron binding.
The structure of the Met144Leu mutant of copper nitrite reductase from Alcaligenes xylosoxidans provides the first glimpse of a protein–protein complex with azurin II
JBIC Journal of Biological Inorganic Chemistry - Tập 12 - Trang 789-796 - 2007
Cu-containing nitrite reductases (NiRs) perform the reduction of nitrite to NO via an ordered mechanism in which the delivery of a proton and an electron to the catalytic type 2 Cu site is highly orchestrated. Electron transfer from a redox partner protein, azurin or pseudoazurin, to the type 1 Cu site is assumed to occur through the formation of a protein–protein complex. We report here a new crystal form in space group P212121 of the Met144Leu mutant of NiR from Alcaligenes xylosoxidans (AxNiR), revealing a head-to-head packing motif involving residues around the hydrophobic patch of domain 1. Superposition of the structure of azurin II with that of domain 1 of one of the Met144Leu molecules provides the first glimpse of an azurin II–NiR protein–protein complex. Mutations of two of the residues of AxNiR, Trp138His (Barrett et al. in Biochemistry 43:16311–16319, 2004) and Met87Leu, highlighted in the AxNiR–azurin complex, results in substantially decreased activity when azurin is used as the electron donor instead of methyl viologen, providing direct evidence for the importance of this region for complex formation.
X-ray absorption spectroscopy studies of the adducts formed between cytotoxic gold compounds and two major serum proteins
JBIC Journal of Biological Inorganic Chemistry - Tập 16 - Trang 491-499 - 2010
Gold metallodrugs form a class of promising antiproliferative agents showing a high propensity to react with proteins. We exploit here X-ray absorption spectroscopy (XAS) methods [both X-ray absorption near-edge spectroscopy (XANES) and extended X-ray absorption fine structure (EXAFS)] to gain insight into the nature of the adducts formed between three representative gold(I, III) metallodrugs (i.e., auranofin, [Au(2,2′-bipyridine)(OH)2](PF6), Aubipy, and dinuclear [Au2(6,6′-dimethyl-2,2′-bipyridine)2(μ-O)2](PF6)2, Auoxo6) and two major plasma proteins, namely, bovine serum albumin (BSA) and human serum apotransferrin (apoTf). The following metallodrug–protein systems were investigated in depth: auranofin/apoTf, Aubipy/BSA, and Auoxo6/apoTf. XANES spectra revealed that auranofin, upon protein binding, conserves its gold(I) oxidation state. Protein binding most probably takes place through release of the thiosugar ligand and its subsequent replacement by a thiol (or a thioether) from the protein. This hypothesis is independently supported by EXAFS results. In contrast, the reactions of Aubipy with serum albumin and of Auoxo6 with serum apoTf invariantly result in gold(III) to gold(I) reduction. Gold(III) reduction, clearly documented by XANES, is accompanied, in both cases, by release of the bipyridyl ligands; for Auoxo6 cleavage of the gold–gold dioxo bridge is also observed. Gold(III) reduction leads to formation of protein-bound gold(I) species, with deeply modified metal coordination environments, as evidenced by EXAFS. In these adducts, the gold(I) centers are probably anchored to the protein through nitrogen donors. In general, these two XAS methods, i.e., XANES and EXAFS, used here jointly, allowed us to gain independent structural information on metallodrug/protein systems; detailed insight into the gold oxidation state and the local environment of protein-bound metal atoms was achieved in the various cases.
Tuning the antiproliferative activity of biologically active iron chelators: characterization of the coordination chemistry and biological efficacy of 2-acetylpyridine and 2-benzoylpyridine hydrazone ligands
JBIC Journal of Biological Inorganic Chemistry - Tập 13 Số 1 - Trang 107-119 - 2007
The use of pseudocontact shifts to refine solution structures of paramagnetic metalloproteins: Met80Ala cyano-cytochrome c as an example
JBIC Journal of Biological Inorganic Chemistry - Tập 1 - Trang 117-126 - 1996
The availability of NOE constraints and of the relative solution structure of a paramagnetic protein permits the use of pseudocontact shifts as further structural constraints. We have developed a strategy based on: (1) determination of the χ tensor anisotropy parameters from the starting structure; (2) recalculation of a new structure by using NOE and pseudocontact shift constraints simultaneously; (3) redetermination of the χ tensor anisotropy parameters from the new structure, and so on until self-consistency. The system investigated is the cyanide derivative of a variant of the oxidized Saccharomyces cerevisiae iso-1-cytochrome c containing the Met80Ala mutation. The structure has been substantially refined. It is shown that the analysis of the deviation of the experimental pseudocontact shifts from those calculated using the starting structure may be unsound, as may the simple structure refinement based on the pseudocontact shift constraints only.
Structural and functional reconstruction in situ of the [CuSMoO2] active site of carbon monoxide dehydrogenase from the carbon monoxide oxidizing eubacterium Oligotropha carboxidovorans
JBIC Journal of Biological Inorganic Chemistry - Tập 10 - Trang 518-528 - 2005
Carbon monoxide dehydrogenase from the bacterium Oligotropha carboxidovorans catalyzes the oxidation of CO to CO2 at a unique [CuSMoO2] cluster. In the bacteria the cluster is assembled post-translational. The integration of S, and particularly of Cu, is rate limiting in vivo, which leads to CO dehydrogenase preparations containing the mature and fully functional enzyme along with forms of the enzyme deficient in one or both of these elements. The active sites of mature and immature forms of CO dehydrogenase were converted into a [MoO3] centre by treatment with potassium cyanide. We have established a method, which rescues 50% of the CO dehydrogenase activity by in vitro reconstitution of the active site through the supply of sulphide first and subsequently of Cu(I) under reducing conditions. Immature forms of CO dehydrogenase isolated from the bacterium, which were deficient in S and/or Cu at the active site, were similarly activated. X-ray crystallography and electron paramagnetic resonance spectroscopy indicated that the [CuSMoO2] cluster was properly reconstructed. However, reconstituted CO dehydrogenase contains mature along with immature forms. The chemical reactions of the reconstitution of CO dehydrogenase are summarized in a model, which assumes resulphuration of the Mo-ion at both equatorial positions at a 1:1 molar ratio. One equatorial Mo–S group reacts with Cu(I) in a productive fashion yielding a mature, functional [CuSMoO2] cluster. The other Mo–S group reacts with Cu(I), then Cu2S is released and an oxo group is introduced from water, yielding an inactive [MoO3] centre.
Dynamic features of carboxy cytoglobin distal mutants investigated by molecular dynamics simulations
JBIC Journal of Biological Inorganic Chemistry - - 2016
Cytoglobin (Cgb) is a member of hemoprotein family with roles in NO metabolism, fibrosis, and tumourigenesis. Similar to other hemoproteins, Cgb structure and functions are markedly influenced by distal key residues. The sixth ligand His81 (E7) is crucial to exogenous ligand binding, heme pocket conformation, and physiological roles of this protein. However, the effects of other key residues on heme pocket and protein biological functions are not well known. In this work, a molecular dynamics (MD) simulation study of two single mutants in CO-ligated Cgb (L46FCgbCO and L46VCgbCO) and two double mutants (L46FH81QCgbCO and L46VH81QCgbCO) was conducted to explore the effects of the key distal residues Leu46(B10) and His81(E7) on Cgb structure and functions. Results indicated that the distal mutation of B10 and E7 affected CgbCO dynamic properties on loop region fluctuation, internal cavity rearrangement, and heme motion. The distal conformation change was reflected by the distal key residues Gln62 (CD3) and Arg84(E10). The hydrogen bond between heme propionates with CD3 or E10 residues were evidently influenced by B10/E7 mutation. Furthermore, heme pocket rearrangement was also observed based on the distal pocket volume and occurrence rate of inner cavities. The mutual effects of B10 and E7 residues on protein conformational rearrangement and other dynamic features were expressed in current MD studies of CgbCO and its distal mutants, suggesting their crucial role in heme pocket stabilization, ligand binding, and Cgb biological functions. The mutation of distal B10 and E7 residues affects the dynamic features of carboxy cytoglobin.
Tổng số: 1,970
- 1
- 2
- 3
- 4
- 5
- 6
- 197