Structural characterization of a carbon monoxide adduct of a heme–DNA complex

JBIC Journal of Biological Inorganic Chemistry - Tập 17 - Trang 437-445 - 2011
Kaori Saito1, Hulin Tai1, Masashi Fukaya1, Tomokazu Shibata1, Ryu Nishimura1, Saburo Neya2, Yasuhiko Yamamoto1
1Department of Chemistry, University of Tsukuba, Tsukuba, Japan
2Department of Physical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan

Tóm tắt

The structure of a carbon monoxide (CO) adduct of a complex between heme and a parallel G-quadruplex DNA formed from a single repeat sequence of the human telomere, d(TTAGGG), has been characterized using 1H and 13C NMR spectroscopy and density function theory calculations. The study revealed that the heme binds to the 3′-terminal G-quartet of the DNA though a π–π stacking interaction between the porphyrin moiety of the heme and the G-quartet. The π–π stacking interaction between the pseudo-C 2-symmetric heme and the C 4-symmetric G-quartet in the complex resulted in the formation of two isomers possessing heme orientations differing by 180° rotation about the pseudo-C 2 axis with respect to the DNA. These two slowly interconverting heme orientational isomers were formed in a ratio of approximately 1:1, reflecting that their thermodynamic stabilities are identical. Exogenous CO is coordinated to heme Fe on the side of the heme opposite the G-quartet in the complex, and the nature of the Fe–CO bond in the complex is similar to that of the Fe–CO bonds in hemoproteins. These findings provide novel insights for the design of novel DNA enzymes possessing metalloporphyrins as prosthetic groups.

Tài liệu tham khảo

Li Y, Geyer R, Sen D (1996) Biochemistry 35:6911–6922 Li Y, Sen D (1997) Biochemistry 36:5589–5599 Travascio P, Witting PK, Mauk AG, Sen D (2001) J Am Chem Soc 123:1337–1348 Witting PK, Travascio P, Sen D, Mauk AG (2001) Inorg Chem 40:5017–5023 Poon LC, Methot SP, Morabi-Pazooki W, Pio F, Bennet AJ, Sen D (2011) J Am Chem Soc 133:1877–1884 Sen D, Gilbert W (1988) Nature 334:364–366 Laughlan G, Murchie AIH, Norman DG, Moore MH, Moody PCE, Liley DMJ, Luisi B (1994) Science 265:520–524 Han H, Hurley LH (2000) Trends Pharmacol Sci 21:136–142 Wang Y, Patel DL (1992) Biochemistry 31:8112–8119 Kato Y, Ohyama T, Mita H, Yamamoto Y (2005) J Am Chem Soc 127:9980–9981 Mikuma T, Terui N, Yamamoto Y, Hori H (2002) Nucleic Acids Res Suppl 2:285–286 Mikuma T, Ohyama T, Terui N, Yamamoto Y, Hori H (2003) Chem Commun 1708–1709 Ohyama T, Mita H, Yamamoto Y (2006) Chem Lett 35:126–127 Saito K, Nakano Y, Tai H, Hemmi H, Mita H, Yamamoto Y (2009) Nucleic Acids Symp Ser 53:241–242 Mita H, Ohyama T, Tanaka Y, Yamamoto Y (2006) Biochemistry 45:6765–6772 Chang CK, Word B, Ebina S (1984) Arch Biochem Biophys 231:336–371 Pitto M, Saudek V, Sklenar V (1992) J Biomol NMR 2:661–666 Sklenar V, Pitto M, Leppik R, Saudek V (1993) J Magn Reson Ser A 102:241–245 States DJ, Haeberkorn RA, Ruben DJ (1982) J Magn Reson 72:286–292 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision E.01. Gaussian, Wallingford Moon RB, Dill K, Richards JH (1977) Biochemistry 16:221–228 Park KD, Guo KM, Adebodun F, Chiu ML, Sligar SG, Oldfield E (1991) Biochemistry 30:2333–2347 Shibata T, Nagao S, Fukaya M, Tai H, Nagatomo S, Morihashi K, Matsuo T, Hirota S, Suzuki A, Imai K, Yamamoto Y (2010) J Am Chem Soc 132:6091–6098 Hazel P, Parkinson GN, Neidle S (2006) J Am Chem Soc 128:5480–5487 Abraham RJ, Medforth CJ (1988) Magn Reson Chem 26:803–812 Wüthrich K, Baumann R (1974) Helv Chim Acta 57:336–350 La Mar GN, Davis NL, Parish DW, Smith KM (1983) J Mol Biol 168:887–896 La Mar GN, Toi H, Krishnamoorthi R (1984) J Am Chem Soc 106:6395–6401 La Mar GN, Yamamoto Y, Jue T, Smith KM, Pandey RK (1985) Biochemistry 24:3826–3831 McLachlan SJ, La Mar GN, Burns PD, Smith KM, Langry KC (1986) Biochim Biophys Acta 874:274–284 Du W, Syvitski R, Dewilde S, Moens L, La Mar GN (2003) J Am Chem Soc 125:8080–8081