Metal coordination and peripheral substitution modulate the activity of cyclic tetrapyrroles on αS aggregation: a structural and cell-based study
Tóm tắt
Từ khóa
Tài liệu tham khảo
Gandhi S, Wood NW (2010) Genome-wide association studies: the key to unlocking neurodegeneration? Nat Neurosci 13:789–794. https://doi.org/10.1038/nn.2584
de Lau LML, Breteler MMB (2006) Epidemiology of Parkinson’s disease. Lancet Neurol 5:525–535. https://doi.org/10.1016/S1474-4422(06)70471-9
Henchcliffe C, Beal MF (2008) Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nat Clin Pract Neurol 4:600–609. https://doi.org/10.1038/ncpneuro0924
Spillantini MG, Crowther RA, Jakes R et al (1998) Filamentous alpha-synuclein inclusions link multiple system atrophy with Parkinson’s disease and dementia with Lewy bodies. Neurosci Lett 251:205–208. https://doi.org/10.1016/S0304-3940(98)00504-7
Papapetropoulos S, Adi N, Ellul J et al (2007) A prospective study of familial versus sporadic Parkinson’s disease. Neurodegener Dis 4:424–427. https://doi.org/10.1159/000107702
Dawson TM, Dawson VL (2003) Rare genetic mutations shed light on the pathogenesis of Parkinson disease. J Clin Invest 111:145–151. https://doi.org/10.1172/JCI17575
McCann H, Stevens CH, Cartwright H, Halliday GM (2014) α-Synucleinopathy phenotypes. Parkinsonism Relat Disord 20(Suppl 1):S62–S67. https://doi.org/10.1016/S1353-8020(13)70017-8
Spillantini MG, Crowther RA, Jakes R et al (1998) alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with lewy bodies. Proc Natl Acad Sci USA 95:6469–6473. https://doi.org/10.1073/pnas.95.11.6469
Volles MJ, Lansbury PT (2003) Zeroing in on the pathogenic form of alpha-synuclein and its mechanism of neurotoxicity in Parkinson’s disease. Biochemistry 42:7871–7878. https://doi.org/10.1021/bi030086j
Cookson MR, van der Brug M (2008) Cell systems and the toxic mechanism(s) of alpha-synuclein. Exp Neurol 209:5–11. https://doi.org/10.1016/j.expneurol.2007.05.022
Eisbach SE, Outeiro TF (2013) Alpha-synuclein and intracellular trafficking: impact on the spreading of Parkinson’s disease pathology. J Mol Med 91:693–703. https://doi.org/10.1007/s00109-013-1038-9
Roberts HL, Brown DR (2015) Seeking a mechanism for the toxicity of oligomeric α-synuclein. Biomolecules 5:282–305. https://doi.org/10.3390/biom5020282
Winner B, Jappelli R, Maji SK et al (2011) In vivo demonstration that alpha-synuclein oligomers are toxic. Proc Natl Acad Sci USA 108:4194–4199. https://doi.org/10.1073/pnas.1100976108
Karpinar DP, Balija MBG, Kügler S et al (2009) Pre-fibrillar alpha-synuclein variants with impaired beta-structure increase neurotoxicity in Parkinson’s disease models. EMBO J 28:3256–3268. https://doi.org/10.1038/emboj.2009.257
Lázaro DF, Rodrigues EF, Langohr R et al (2014) Systematic comparison of the effects of alpha-synuclein mutations on its oligomerization and aggregation. PLoS Genet 10:e1004741. https://doi.org/10.1371/journal.pgen.1004741
Pokrzywa M, Pawełek K, Kucia WE et al (2017) Effects of small-molecule amyloid modulators on a Drosophila model of Parkinson’s disease. PLoS One 12:e0184117. https://doi.org/10.1371/journal.pone.0184117
Kurnik M, Sahin C, Andersen CB et al (2018) Potent α-synuclein aggregation inhibitors, identified by high-throughput screening, mainly target the monomeric state. Cell Chem Biol 25:1389–1402.e9. https://doi.org/10.1016/j.chembiol.2018.08.005
Tonda-Turo C, Herva M, Chiono V et al (2018) Influence of drug-carrier polymers on alpha-synucleinopathies: a neglected aspect in new therapies development. Biomed Res Int 2018:4518060. https://doi.org/10.1155/2018/4518060
Trigo-Damas I, Del Rey NL-G, Blesa J (2018) Novel models for Parkinson’s disease and their impact on future drug discovery. Expert Opin Drug Discov 13:229–239. https://doi.org/10.1080/17460441.2018.1428556
Maroteaux L, Campanelli JT, Scheller RH (1988) Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J Neurosci 8:2804–2815
Burré J, Sharma M, Südhof TC (2014) α-Synuclein assembles into higher-order multimers upon membrane binding to promote SNARE complex formation. Proc Natl Acad Sci USA 111:E4274–E4283. https://doi.org/10.1073/pnas.1416598111
Stefanis L (2012) α-Synuclein in Parkinson’s disease. Cold Spring Harb Perspect Med 2:a009399. https://doi.org/10.1101/cshperspect.a009399
Sidhu A, Wersinger C, Vernier P (2004) Does alpha-synuclein modulate dopaminergic synaptic content and tone at the synapse? FASEB J 18:637–647. https://doi.org/10.1096/fj.03-1112rev
Yavich L, Tanila H, Vepsäläinen S, Jäkälä P (2004) Role of alpha-synuclein in presynaptic dopamine recruitment. J Neurosci 24:11165–11170. https://doi.org/10.1523/JNEUROSCI.2559-04.2004
Breydo L, Wu JW, Uversky VN (2012) Α-synuclein misfolding and Parkinson’s disease. Biochim Biophys Acta 1822:261–285. https://doi.org/10.1016/j.bbadis.2011.10.002
Dedmon MM, Lindorff-Larsen K, Christodoulou J et al (2005) Mapping long-range interactions in alpha-synuclein using spin-label NMR and ensemble molecular dynamics simulations. J Am Chem Soc 127:476–477. https://doi.org/10.1021/ja044834j
Bertoncini CW, Jung Y-S, Fernandez CO et al (2005) Release of long-range tertiary interactions potentiates aggregation of natively unstructured alpha-synuclein. Proc Natl Acad Sci USA 102:1430–1435. https://doi.org/10.1073/pnas.0407146102
Cho M-K, Nodet G, Kim H-Y et al (2009) Structural characterization of alpha-synuclein in an aggregation prone state. Protein Sci 18:1840–1846. https://doi.org/10.1002/pro.194
Chiti F, Dobson CM (2017) Protein misfolding, amyloid formation, and human disease: a summary of progress over the last decade. Annu Rev Biochem 86:27–68. https://doi.org/10.1146/annurev-biochem-061516-045115
Moriarty GM, Janowska MK, Kang L, Baum J (2013) Exploring the accessible conformations of N-terminal acetylated α-synuclein. FEBS Lett 587:1128–1138. https://doi.org/10.1016/j.febslet.2013.02.049
Kang L, Moriarty GM, Woods LA et al (2012) N-terminal acetylation of α-synuclein induces increased transient helical propensity and decreased aggregation rates in the intrinsically disordered monomer. Protein Sci 21:911–917. https://doi.org/10.1002/pro.2088
Liu T, Bitan G (2012) Modulating self-assembly of amyloidogenic proteins as a therapeutic approach for neurodegenerative diseases: strategies and mechanisms. ChemMedChem 7:359–374. https://doi.org/10.1002/cmdc.201100585
Villemagne VL, Doré V, Bourgeat P et al (2017) Aβ-amyloid and Tau Imaging in Dementia. Semin Nucl Med 47:75–88. https://doi.org/10.1053/j.semnuclmed.2016.09.006
Arja K, Sjölander D, Åslund A et al (2013) Enhanced fluorescent assignment of protein aggregates by an oligothiophene-porphyrin-based amyloid ligand. Macromol Rapid Commun 34:723–730. https://doi.org/10.1002/marc.201200817
Lamberto GR, Binolfi A, Orcellet ML et al (2009) Structural and mechanistic basis behind the inhibitory interaction of PcTS on alpha-synuclein amyloid fibril formation. Proc Natl Acad Sci USA 106:21057–21062. https://doi.org/10.1073/pnas.0902603106
Valiente-Gabioud AA, Riedel D, Outeiro TF et al (2018) Binding modes of phthalocyanines to amyloid β peptide and their effects on amyloid fibril formation. Biophys J 114:1036–1045. https://doi.org/10.1016/j.bpj.2018.01.003
Lamberto GR, Torres-Monserrat V, Bertoncini CW et al (2011) Toward the discovery of effective polycyclic inhibitors of alpha-synuclein amyloid assembly. J Biol Chem 286:32036–32044. https://doi.org/10.1074/jbc.M111.242958
Bulic B, Pickhardt M, Khlistunova I et al (2007) Rhodanine-based tau aggregation inhibitors in cell models of tauopathy. Angew Chem Int Ed Engl 46:9215–9219. https://doi.org/10.1002/anie.200704051
Schenk D, Basi GS, Pangalos MN (2012) Treatment strategies targeting amyloid β-protein. Cold Spring Harb Perspect Med 2:a006387. https://doi.org/10.1101/cshperspect.a006387
Masuda M, Suzuki N, Taniguchi S et al (2006) Small molecule inhibitors of alpha-synuclein filament assembly. Biochemistry 45:6085–6094. https://doi.org/10.1021/bi0600749
Caughey B, Caughey WS, Kocisko DA et al (2006) Prions and transmissible spongiform encephalopathy (TSE) chemotherapeutics: a common mechanism for anti-TSE compounds? Acc Chem Res 39:646–653. https://doi.org/10.1021/ar050068p
Ehrnhoefer DE, Bieschke J, Boeddrich A et al (2008) EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nat Struct Mol Biol 15:558–566. https://doi.org/10.1038/nsmb.1437
Caughey WS, Priola SA, Kocisko DA et al (2007) Cyclic tetrapyrrole sulfonation, metals, and oligomerization in antiprion activity. Antimicrob Agents Chemother 51:3887–3894. https://doi.org/10.1128/AAC.01599-06
Wagner J, Ryazanov S, Leonov A et al (2013) Anle138b: a novel oligomer modulator for disease-modifying therapy of neurodegenerative diseases such as prion and Parkinson’s disease. Acta Neuropathol 125:795–813. https://doi.org/10.1007/s00401-013-1114-9
Levin J, Schmidt F, Boehm C et al (2014) The oligomer modulator anle138b inhibits disease progression in a Parkinson mouse model even with treatment started after disease onset. Acta Neuropathol 127:779–780. https://doi.org/10.1007/s00401-014-1265-3
Scherzer-Attali R, Shaltiel-Karyo R, Adalist YH et al (2012) Generic inhibition of amyloidogenic proteins by two naphthoquinone-tryptophan hybrid molecules. Proteins 80:1962–1973. https://doi.org/10.1002/prot.24080
Frydman-Marom A, Shaltiel-Karyo R, Moshe S, Gazit E (2011) The generic amyloid formation inhibition effect of a designed small aromatic β-breaking peptide. Amyloid 18:119–127. https://doi.org/10.3109/13506129.2011.582902
Frydman-Marom A, Rechter M, Shefler I et al (2009) Cognitive-performance recovery of Alzheimer’s disease model mice by modulation of early soluble amyloidal assemblies. Angew Chem Int Ed Engl 48:1981–1986. https://doi.org/10.1002/anie.200802123
González-Lizárraga F, Socías SB, Ávila CL et al (2017) Repurposing doxycycline for synucleinopathies: remodelling of α-synuclein oligomers towards non-toxic parallel beta-sheet structured species. Sci Rep 7:41755. https://doi.org/10.1038/srep41755
Pujols J, Peña-Díaz S, Lázaro DF et al (2018) Small molecule inhibits α-synuclein aggregation, disrupts amyloid fibrils, and prevents degeneration of dopaminergic neurons. Proc Natl Acad Sci USA 115:10481–10486. https://doi.org/10.1073/pnas.1804198115
Valdinocci D, Grant GD, Dickson TC, Pountney DL (2018) Epothilone D inhibits microglia-mediated spread of alpha-synuclein aggregates. Mol Cell Neurosci 89:80–94. https://doi.org/10.1016/j.mcn.2018.04.006
Schwab K, Frahm S, Horsley D et al (2017) A protein aggregation inhibitor, leuco-methylthioninium bis(hydromethanesulfonate), decreases α-synuclein inclusions in a transgenic mouse model of synucleinopathy. Front Mol Neurosci 10:447. https://doi.org/10.3389/fnmol.2017.00447
Palazzi L, Bruzzone E, Bisello G et al (2018) Oleuropein aglycone stabilizes the monomeric α-synuclein and favours the growth of non-toxic aggregates. Sci Rep 8:8337. https://doi.org/10.1038/s41598-018-26645-5
Jha NN, Kumar R, Panigrahi R et al (2017) Comparison of α-synuclein fibril inhibition by four different amyloid inhibitors. ACS Chem Neurosci 8:2722–2733. https://doi.org/10.1021/acschemneuro.7b00261
Reiner AM, Schmidt F, Ryazanov S et al (2018) Photophysics of diphenyl-pyrazole compounds in solutions and α-synuclein aggregates. Biochim Biophys Acta Gen Subj 1862:800–807. https://doi.org/10.1016/j.bbagen.2017.12.007
Valiente-Gabioud AA, Miotto MC, Chesta ME et al (2016) Phthalocyanines as molecular scaffolds to block disease-associated protein aggregation. Acc Chem Res 49:801–808. https://doi.org/10.1021/acs.accounts.5b00507
Fonseca-Ornelas L, Eisbach SE, Paulat M et al (2014) Small molecule-mediated stabilization of vesicle-associated helical α-synuclein inhibits pathogenic misfolding and aggregation. Nat Commun 5:5857. https://doi.org/10.1038/ncomms6857
Akoury E, Gajda M, Pickhardt M et al (2013) Inhibition of tau filament formation by conformational modulation. J Am Chem Soc 135:2853–2862. https://doi.org/10.1021/ja312471h
Chakraborty R, Sahoo S, Halder N et al (2019) Conformational-switch based strategy triggered by [18] π heteroannulenes toward reduction of alpha synuclein oligomer toxicity. ACS Chem Neurosci 10:573–587. https://doi.org/10.1021/acschemneuro.8b00436
Caughey B, Lansbury PT (2003) Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu Rev Neurosci 26:267–298. https://doi.org/10.1146/annurev.neuro.26.010302.081142
Caughey WS, Raymond LD, Horiuchi M, Caughey B (1998) Inhibition of protease-resistant prion protein formation by porphyrins and phthalocyanines. Proc Natl Acad Sci USA 95:12117–12122. https://doi.org/10.1073/pnas.95.21.12117
Priola SA, Raines A, Caughey WS (2000) Porphyrin and phthalocyanine antiscrapie compounds. Science 287:1503–1506
Johnson M, Geeves MA, Mulvihill DP (2013) Production of amino-terminally acetylated recombinant proteins in E. coli. Methods Mol Biol 981:193–200. https://doi.org/10.1007/978-1-62703-305-3_15
Hoyer W, Cherny D, Subramaniam V, Jovin TM (2004) Impact of the acidic C-terminal region comprising amino acids 109-140 on alpha-synuclein aggregation in vitro. Biochemistry 43:16233–16242. https://doi.org/10.1021/bi048453u
Cavanagh J, Fairbrother W, Palmer A III, Skelton N (1995) Protein NMR spectroscopy: principles and practice. Academic Press. ISBN: 9780080515298