ISME Journal

  1751-7362

  1751-7370

  Anh Quốc

Cơ quản chủ quản:  Nature Publishing Group , Springer Nature

Lĩnh vực:
Ecology, Evolution, Behavior and SystematicsMicrobiology

Phân tích ảnh hưởng

Thông tin về tạp chí

 

The ISME Journal seeks to promote diverse and integrated areas of microbial ecology spanning the breadth of microbial life, including bacteria, archaea, microbial eukaryotes, and viruses. Contributions of broad biological interest and impact are especially encouraged. Topics of particular interest within the journal's scope include those listed below: - Microbial population and community ecology. - Microbe-microbe and microbe-host interactions. - Evolutionary genetics. - Integrated genomics and post-genomics approaches in microbial ecology. - Microbial engineering. - Geomicrobiology and microbial contributions to geochemical cycles. - Microbial ecology and functional diversity of natural habitats. - Microbial ecosystem impacts.

Các bài báo tiêu biểu

A widespread plant-fungal-bacterial symbiosis promotes plant biodiversity, plant nutrition and seedling recruitment
Tập 10 Số 2 - Trang 389-399 - 2016
Marcel G. A. van der Heijden, Susanne De Bruin, L.L.P. Luckerhoff, Richard S. P. van Logtestijn, Klaus Schlaeppi
Abstract Highly diverse microbial assemblages colonize plant roots. It is still poorly understood whether different members of this root microbiome act synergistically by supplying different services (for example, different limiting nutrients) to plants and plant communities. In order to test this, we manipulated the presence of two widespread plant root symbionts, arbuscular mycorrhizal fungi and nitrogen-fixing rhizobia bacteria in model grassland communities established in axenic microcosms. Here, we demonstrate that both symbionts complement each other resulting in increased plant diversity, enhanced seedling recruitment and improved nutrient acquisition compared with a single symbiont situation. Legume seedlings obtained up to 15-fold higher productivity if they formed an association with both symbionts, opposed to productivity they reached with only one symbiont. Our results reveal the importance of functional diversity of symbionts and demonstrate that different members of the root microbiome can complement each other in acquiring different limiting nutrients and in driving important ecosystem functions.
Particle-size distributions and seasonal diversity of allergenic and pathogenic fungi in outdoor air
Tập 6 Số 10 - Trang 1801-1811 - 2012
Naomichi Yamamoto, Kyle Bibby, Jing Qian, Denina Hospodsky, Hamid Rismani‐Yazdi, William W. Nazaroff, Jordan Peccia
Abstract Fungi are ubiquitous in outdoor air, and their concentration, aerodynamic diameters and taxonomic composition have potentially important implications for human health. Although exposure to fungal allergens is considered a strong risk factor for asthma prevalence and severity, limitations in tracking fungal diversity in air have thus far prevented a clear understanding of their human pathogenic properties. This study used a cascade impactor for sampling, and quantitative real-time PCR plus 454 pyrosequencing for analysis to investigate seasonal, size-resolved fungal communities in outdoor air in an urban setting in the northeastern United States. From the 20 libraries produced with an average of ∼800 internal transcribed spacer (ITS) sequences (total 15 326 reads), 12 864 and 11 280 sequences were determined to the genus and species levels, respectively, and 558 different genera and 1172 different species were identified, including allergens and infectious pathogens. These analyses revealed strong relationships between fungal aerodynamic diameters and features of taxonomic compositions. The relative abundance of airborne allergenic fungi ranged from 2.8% to 10.7% of total airborne fungal taxa, peaked in the fall, and increased with increasing aerodynamic diameter. Fungi that can cause invasive fungal infections peaked in the spring, comprised 0.1–1.6% of fungal taxa and typically increased in relative abundance with decreasing aerodynamic diameter. Atmospheric fungal ecology is a strong function of aerodynamic diameter, whereby through physical processes, the size influences the diversity of airborne fungi that deposit in human airways and the efficiencies with which specific groups of fungi partition from outdoor air to indoor environments.
Dispersal in microbes: fungi in indoor air are dominated by outdoor air and show dispersal limitation at short distances
Tập 7 Số 7 - Trang 1262-1273 - 2013
Rachel I. Adams, Marzia Miletto, John W. Taylor, Thomas D. Bruns
Abstract The indoor microbiome is a complex system that is thought to depend on dispersal from the outdoor biome and the occupants’ microbiome combined with selective pressures imposed by the occupants’ behaviors and the building itself. We set out to determine the pattern of fungal diversity and composition in indoor air on a local scale and to identify processes behind that pattern. We surveyed airborne fungal assemblages within 1-month time periods at two seasons, with high replication, indoors and outdoors, within and across standardized residences at a university housing facility. Fungal assemblages indoors were diverse and strongly determined by dispersal from outdoors, and no fungal taxa were found as indicators of indoor air. There was a seasonal effect on the fungi found in both indoor and outdoor air, and quantitatively more fungal biomass was detected outdoors than indoors. A strong signal of isolation by distance existed in both outdoor and indoor airborne fungal assemblages, despite the small geographic scale in which this study was undertaken (<500 m). Moreover, room and occupant behavior had no detectable effect on the fungi found in indoor air. These results show that at the local level, outdoor air fungi dominate the patterning of indoor air. More broadly, they provide additional support for the growing evidence that dispersal limitation, even on small geographic scales, is a key process in structuring the often-observed distance–decay biogeographic pattern in microbial communities.
The effects of subtherapeutic antibiotic use in farm animals on the proliferation and persistence of antibiotic resistance among soil bacteria
Tập 1 Số 3 - Trang 191-203 - 2007
Sudeshna Ghosh, Timothy M. LaPara
Abstract The use of antibiotics at subtherapeutic concentrations for agricultural applications is believed to be an important factor in the proliferation of antibiotic-resistant bacteria. The goal of this study was to determine if the application of manure onto agricultural land would result in the proliferation of antibiotic resistance among soil bacteria. Chlortetracycline-resistant bacteria were enumerated and characterized from soils exposed to the manure of animals fed subtherapeutic concentrations of antibiotics and compared to the chlortetracycline-resistant bacteria from soils at farms with restricted antibiotic use (dairy farms) and from non-agricultural soils. No significant differences were observed at nine different study sites with respect to the numbers and types of cultivated chlortetracycline-resistant bacteria. Genes encoding for tetracycline resistance were rarely detected in the resistant bacteria from these sites. In contrast, soils collected from a tenth farm, which allowed manure to indiscriminately accumulate outside the animal pen, had significantly higher chlortetracycline-resistance levels. These resistant bacteria frequently harbored one of 14 different genes encoding for tetracycline resistance, many of which (especially tet(A) and tet(L)) were detected in numerous different bacterial species. Subsequent bacterial enumerations at this site, following the cessation of farming activity, suggested that this farm remained a hotspot for antibiotic resistance. In conclusion, we speculate that excessive application of animal manure leads to the spread of resistance to soil bacteria (potentially by lateral gene transfer), which then serve as persistent reservoir of antibiotic resistance.
Metaproteomics of cellulose methanisation under thermophilic conditions reveals a surprisingly high proteolytic activity
Tập 8 Số 1 - Trang 88-102 - 2014
Fan Lü, Ariane Bize, Alain Guillot, Véronique Monnet, Céline Madigou, Olivier Chapleur, Laurent Mazéas, Pinjing He, T. Bouchez
Abstract Cellulose is the most abundant biopolymer on Earth. Optimising energy recovery from this renewable but recalcitrant material is a key issue. The metaproteome expressed by thermophilic communities during cellulose anaerobic digestion was investigated in microcosms. By multiplying the analytical replicates (65 protein fractions analysed by MS/MS) and relying solely on public protein databases, more than 500 non-redundant protein functions were identified. The taxonomic community structure as inferred from the metaproteomic data set was in good overall agreement with 16S rRNA gene tag pyrosequencing and fluorescent in situ hybridisation analyses. Numerous functions related to cellulose and hemicellulose hydrolysis and fermentation catalysed by bacteria related to Caldicellulosiruptor spp. and Clostridium thermocellum were retrieved, indicating their key role in the cellulose-degradation process and also suggesting their complementary action. Despite the abundance of acetate as a major fermentation product, key methanogenesis enzymes from the acetoclastic pathway were not detected. In contrast, enzymes from the hydrogenotrophic pathway affiliated to Methanothermobacter were almost exclusively identified for methanogenesis, suggesting a syntrophic acetate oxidation process coupled to hydrogenotrophic methanogenesis. Isotopic analyses confirmed the high dominance of the hydrogenotrophic methanogenesis. Very surprising was the identification of an abundant proteolytic activity from Coprothermobacter proteolyticus strains, probably acting as scavenger and/or predator performing proteolysis and fermentation. Metaproteomics thus appeared as an efficient tool to unravel and characterise metabolic networks as well as ecological interactions during methanisation bioprocesses. More generally, metaproteomics provides direct functional insights at a limited cost, and its attractiveness should increase in the future as sequence databases are growing exponentially.
An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea
Tập 6 Số 3 - Trang 610-618 - 2012
Daniel McDonald, Morgan N. Price, Julia K. Goodrich, Eric P. Nawrocki, Todd Z. DeSantis, Alexander J. Probst, Gary L. Andersen, Rob Knight, Philip Hugenholtz
Abstract Reference phylogenies are crucial for providing a taxonomic framework for interpretation of marker gene and metagenomic surveys, which continue to reveal novel species at a remarkable rate. Greengenes is a dedicated full-length 16S rRNA gene database that provides users with a curated taxonomy based on de novo tree inference. We developed a ‘taxonomy to tree’ approach for transferring group names from an existing taxonomy to a tree topology, and used it to apply the Greengenes, National Center for Biotechnology Information (NCBI) and cyanoDB (Cyanobacteria only) taxonomies to a de novo tree comprising 408 315 sequences. We also incorporated explicit rank information provided by the NCBI taxonomy to group names (by prefixing rank designations) for better user orientation and classification consistency. The resulting merged taxonomy improved the classification of 75% of the sequences by one or more ranks relative to the original NCBI taxonomy with the most pronounced improvements occurring in under-classified environmental sequences. We also assessed candidate phyla (divisions) currently defined by NCBI and present recommendations for consolidation of 34 redundantly named groups. All intermediate results from the pipeline, which includes tree inference, jackknifing and transfer of a donor taxonomy to a recipient tree (tax2tree) are available for download. The improved Greengenes taxonomy should provide important infrastructure for a wide range of megasequencing projects studying ecosystems on scales ranging from our own bodies (the Human Microbiome Project) to the entire planet (the Earth Microbiome Project). The implementation of the software can be obtained from http://sourceforge.net/projects/tax2tree/.
Interpreting 16S metagenomic data without clustering to achieve sub-OTU resolution
Tập 9 Số 1 - Trang 68-80 - 2015
Mikhail Tikhonov, Robert Leach, Ned S. Wingreen
Abstract The standard approach to analyzing 16S tag sequence data, which relies on clustering reads by sequence similarity into Operational Taxonomic Units (OTUs), underexploits the accuracy of modern sequencing technology. We present a clustering-free approach to multi-sample Illumina data sets that can identify independent bacterial subpopulations regardless of the similarity of their 16S tag sequences. Using published data from a longitudinal time-series study of human tongue microbiota, we are able to resolve within standard 97% similarity OTUs up to 20 distinct subpopulations, all ecologically distinct but with 16S tags differing by as little as one nucleotide (99.2% similarity). A comparative analysis of oral communities of two cohabiting individuals reveals that most such subpopulations are shared between the two communities at 100% sequence identity, and that dynamical similarity between subpopulations in one host is strongly predictive of dynamical similarity between the same subpopulations in the other host. Our method can also be applied to samples collected in cross-sectional studies and can be used with the 454 sequencing platform. We discuss how the sub-OTU resolution of our approach can provide new insight into factors shaping community assembly.
Spatial variability overwhelms seasonal patterns in bacterioplankton communities across a river to ocean gradient
Tập 6 Số 3 - Trang 554-563 - 2012
Elizabeth A. Edwards, Lydie Herfort, Peter Zuber, António M. Baptista, Byron C. Crump
Abstract Few studies of microbial biogeography address variability across both multiple habitats and multiple seasons. Here we examine the spatial and temporal variability of bacterioplankton community composition of the Columbia River coastal margin using 16S amplicon pyrosequencing of 300 water samples collected in 2007 and 2008. Communities separated into seven groups (ANOSIM, P<0.001): river, estuary, plume, epipelagic, mesopelagic, shelf bottom (depth<350 m) and slope bottom (depth>850 m). The ordination of these samples was correlated with salinity (ρ=−0.83) and depth (ρ=−0.62). Temporal patterns were obscured by spatial variability among the coastal environments, and could only be detected within individual groups. Thus, structuring environmental factors (for example, salinity, depth) dominate over seasonal changes in determining community composition. Seasonal variability was detected across an annual cycle in the river, estuary and plume where communities separated into two groups, early year (April–July) and late year (August–Nov), demonstrating annual reassembly of communities over time. Determining both the spatial and temporal variability of bacterioplankton communities provides a framework for modeling these communities across environmental gradients from river to deep ocean.
Skin microbes on frogs prevent morbidity and mortality caused by a lethal skin fungus
Tập 3 Số 7 - Trang 818-824 - 2009
Reid N. Harris, Robert M. Brucker, Jenifer B. Walke, Matthew H. Becker, Christian R. Schwantes, Devon C. Flaherty, Brianna A. Lam, Douglas C. Woodhams, Cheryl J. Briggs, Vance T. Vredenburg, Kevin P. C. Minbiole
Co-habiting amphibian species harbor unique skin bacterial communities in wild populations
Tập 6 Số 3 - Trang 588-596 - 2012
Valerie J. McKenzie, Robert M. Bowers, Noah Fierer, Rob Knight, Christian L. Lauber
Abstract Although all plant and animal species harbor microbial symbionts, we know surprisingly little about the specificity of microbial communities to their hosts. Few studies have compared the microbiomes of different species of animals, and fewer still have examined animals in the wild. We sampled four pond habitats in Colorado, USA, where multiple amphibian species were present. In total, 32 amphibian individuals were sampled from three different species including northern leopard frogs (Lithobates pipiens), western chorus frogs (Pseudacris triseriata) and tiger salamanders (Ambystoma tigrinum). We compared the diversity and composition of the bacterial communities on the skin of the collected individuals via barcoded pyrosequencing of the 16S rRNA gene. Dominant bacterial phyla included Acidobacteria, Actinobacteria, Bacteriodetes, Cyanobacteria, Firmicutes and Proteobacteria. In total, we found members of 18 bacterial phyla, comparable to the taxonomic diversity typically found on human skin. Levels of bacterial diversity varied strongly across species: L. pipiens had the highest diversity; A. tigrinum the lowest. Host species was a highly significant predictor of bacterial community similarity, and co-habitation within the same pond was not significant, highlighting that the skin-associated bacterial communities do not simply reflect those bacterial communities found in their surrounding environments. Innate species differences thus appear to regulate the structure of skin bacterial communities on amphibians. In light of recent discoveries that some bacteria on amphibian skin have antifungal activity, our finding suggests that host-specific bacteria may have a role in the species-specific resistance to fungal pathogens.