
Global Ecology and Biogeography
SCIE-ISI SCOPUS (1998-2023)
1466-8238
1466-822X
Anh Quốc
Cơ quản chủ quản: WILEY , Wiley-Blackwell Publishing Ltd
Các bài báo tiêu biểu
Landscape modification and habitat fragmentation are key drivers of global species loss. Their effects may be understood by focusing on: (1) individual species and the processes threatening them, and (2) human‐perceived landscape patterns and their correlation with species and assemblages. Individual species may decline as a result of interacting exogenous and endogenous threats, including habitat loss, habitat degradation, habitat isolation, changes in the biology, behaviour, and interactions of species, as well as additional, stochastic threats. Human‐perceived landscape patterns that are frequently correlated with species assemblages include the amount and structure of native vegetation, the prevalence of anthropogenic edges, the degree of landscape connectivity, and the structure and heterogeneity of modified areas. Extinction cascades are particularly likely to occur in landscapes with low native vegetation cover, low landscape connectivity, degraded native vegetation and intensive land use in modified areas, especially if keystone species or entire functional groups of species are lost. This review (1) demonstrates that species‐oriented and pattern‐oriented approaches to understanding the ecology of modified landscapes are highly complementary, (2) clarifies the links between a wide range of interconnected themes, and (3) provides clear and consistent terminology. Tangible research and management priorities are outlined that are likely to benefit the conservation of native species in modified landscapes around the world.
Studies of elevation clines in diversity and composition of ecological communities date back to the origins of biogeography. A modern resurgence of interests in these elevational clines is likely to contribute important insights for developing a more general theory of species diversity. In order to gain a more comprehensive understanding of geographical clines in diversity, the research programme for montane biogeography should include statistically rigorous tests of apparent patterns, comparisons of patterns among regions and taxonomic or ecological groups of species, and analyses of clines in environmental variables concurrent with biogeographical surveys. The conceptual framework for this research programme should be based on the assumption that elevational gradients in species diversity result from a combination of ecological and evolutionary processes, rather than the presumed independent effects of one overriding force. Given that montane ecosystems are hot spots of biological diversity, an expanded and integrated programme for biogeographic surveys in montane regions should provide valuable insights for conservation biologists.
The variation in species composition among sites, or beta diversity, can be decomposed into replacement and richness difference. A debate is ongoing in the literature concerning the best ways of computing and interpreting these indices. This paper first reviews the historical development of the formulae for decomposing dissimilarities into replacement, richness difference and nestedness indices. These formulae are presented for species presence–absence and abundance using a unified algebraic framework. The indices decomposing beta play different roles in ecological analysis than do beta‐diversity indices.
Replacement and richness difference indices can be interpreted and related to ecosystem processes. The pairwise index values can be summed across all pairs of sites; these sums form a valid decomposition of total beta diversity into total replacement and total richness difference components. Different communities and study areas can be compared: some may be dominated by replacement, others by richness/abundance difference processes. Within a region, differences among sites measured by these indices can then be analysed and interpreted using explanatory variables or experimental factors. The paper also shows that local contributions of replacement and richness difference to total beta diversity can be computed and mapped. A case study is presented involving fish communities along a river.
The different forms of indices are based upon the same functional numerators. These indices are complementary; they can help researchers understand different aspects of ecosystem functioning. The methods of analysis used in this paper apply to any of the indices recently proposed. Further work, based on ecological theory and numerical simulations, is required to clarify the precise meaning and domain of application of the different forms. The forms available for presence–absence and quantitative data are both useful because these different data types allow researchers to answer different types of ecological or biogeographic questions.
The availability of user‐friendly, high‐resolution global environmental datasets is crucial for bioclimatic modelling. For terrestrial environments, WorldClim has served this purpose since 2005, but equivalent marine data only became available in 2012, with pioneer initiatives like Bio‐ORACLE providing data layers for several ecologically relevant variables. Currently, the available marine data packages have not yet been updated to the most recent Intergovernmental Panel on Climate Change (IPCC) predictions nor to present times, and are mostly restricted to the top surface layer of the oceans, precluding the modelling of a large fraction of the benthic diversity that inhabits deeper habitats. To address this gap, we present a significant update of Bio‐ORACLE for new future climate scenarios, present‐day conditions and benthic layers (near sea bottom). The reliability of data layers was assessed using a cross‐validation framework against in situ quality‐controlled data. This test showed a generally good agreement between our data layers and the global climatic patterns. We also provide a package of functions in the R software environment (
Surface and benthic layers for water temperature, salinity, nutrients, chlorophyll, sea ice, current velocity, phytoplankton, primary productivity, iron and light at bottom.
Global at 5 arcmin (
Present (2000–2014) and future (2040–2050 and 2090–2100) environmental conditions based on monthly averages.
Marine biodiversity associated with sea surface and epibenthic habitats.
ASCII and TIFF grid formats for geographical information systems and a package of functions developed for R software.