Bio‐ORACLE v2.0: Extending marine data layers for bioclimatic modelling

Global Ecology and Biogeography - Tập 27 Số 3 - Trang 277-284 - 2018
Jorge Assis1, L. Tyberghein2, Samuel Bosch2,3, Heroen Verbruggen4, Ester Á. Serrão1, Olivier De Clerck3
1Centre for Marine Sciences, CCMAR‐CIMAR University of Algarve Faro Portugal
2Flanders Marine Institute VLIZ, InnovOcean Site, Ostend, Belgium
3Phycology Research Group, Biology Department, Ghent University, Ghent, Belgium
4School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia

Tóm tắt

AbstractMotivation

The availability of user‐friendly, high‐resolution global environmental datasets is crucial for bioclimatic modelling. For terrestrial environments, WorldClim has served this purpose since 2005, but equivalent marine data only became available in 2012, with pioneer initiatives like Bio‐ORACLE providing data layers for several ecologically relevant variables. Currently, the available marine data packages have not yet been updated to the most recent Intergovernmental Panel on Climate Change (IPCC) predictions nor to present times, and are mostly restricted to the top surface layer of the oceans, precluding the modelling of a large fraction of the benthic diversity that inhabits deeper habitats. To address this gap, we present a significant update of Bio‐ORACLE for new future climate scenarios, present‐day conditions and benthic layers (near sea bottom). The reliability of data layers was assessed using a cross‐validation framework against in situ quality‐controlled data. This test showed a generally good agreement between our data layers and the global climatic patterns. We also provide a package of functions in the R software environment (sdmpredictors) to facilitate listing, extraction and management of data layers and allow easy integration with the available pipelines for bioclimatic modelling.

Main types of variable contained

Surface and benthic layers for water temperature, salinity, nutrients, chlorophyll, sea ice, current velocity, phytoplankton, primary productivity, iron and light at bottom.

Spatial location and grain

Global at 5 arcmin (c. 0.08° or 9.2 km at the equator).

Time period and grain

Present (2000–2014) and future (2040–2050 and 2090–2100) environmental conditions based on monthly averages.

Major taxa and level of measurement

Marine biodiversity associated with sea surface and epibenthic habitats.

Software format

ASCII and TIFF grid formats for geographical information systems and a package of functions developed for R software.

Từ khóa


Tài liệu tham khảo

Assis J., 2017, Projected climate changes threaten ancient refugia of kelp forests in the North Atlantic, Global Change Biology

10.1038/srep44348

10.1111/jbi.12677

10.1111/mec.12772

10.1371/journal.pone.0128124

10.1038/srep36460

10.1038/nature12976

10.1016/j.tree.2016.06.001

Chefaoui R. M., 2015, Large‐scale prediction of seagrass distribution integrating landscape metrics and environmental factors: The case of Cymodocea nodosa (Mediterranean–Atlantic), Estuaries and Coasts, 123

10.1126/science.1206432

10.1371/journal.pone.0018483

Fautin D. G. &Buddemeier R. W.(2008).Biogeoinformatics of the hexacorals. Retrieved fromhttp://www.kgs.ku.edu/Hexacoral/

10.1111/j.1558-5646.2009.00803.x

GEBCO, 2015, General bathymetric chart of the oceans

10.1073/pnas.0704778104

10.1111/j.1461-0248.2005.00792.x

10.1111/ele.12189

10.1126/science.aaa0629

10.1046/j.1466-822X.2002.00306.x

10.1002/joc.1276

10.1002/joc.1276

10.1371/journal.pone.0090121

10.1111/j.1365-2419.2010.00540.x

10.1029/2008JD010100

10.1016/j.ecss.2007.05.015

Kaschner K. Kesner‐Reyes K. Garilao C. Rius‐Barile J. Rees T. &Froese R.(2008).AquaMaps: Predicted range maps for aquatic species. Retrieved fromhttp://www.aquamaps.org

10.1111/j.1461-0248.2008.01277.x

10.1111/j.2041-210X.2011.00138.x

10.1111/ele.12604

Levitus S., 2001, World ocean atlas

10.17161/bi.v10i0.4955

10.1038/nature08823

10.1111/ecog.01881

10.1371/journal.pone.0131530

10.1175/1520-0442(1999)012<0829:RTCSTC>2.0.CO;2

10.5194/essd-8-297-2016

10.1007/s00382-008-0509-0

10.1111/j.1600-0587.2013.00291.x

10.1126/science.1111322

Peterson A. T. T., 2011, Horn monographs

R Development Core Team, 2016, R: A language and environment for statistical computing

10.1093/icesjms/fsu107

10.1111/j.1466-8238.2010.00636.x

10.1890/12-1358.1

10.1016/j.marpolbul.2013.09.019

10.1038/nature16144

10.1016/0167-8809(85)90016-7

10.1038/nature02121

10.1111/j.1600-0587.2008.05742.x

10.1111/j.1466-8238.2011.00656.x

10.1371/journal.pone.0129037

10.1111/j.1466-8238.2009.00463.x

10.1371/journal.pone.0000563

10.1029/2008JC004942

10.1080/01431160902893485

10.1029/96JB00104

Wilby R. L., 2004, Guidelines for use of climate scenarios developed from statistical downscaling methods. IPCC Task Group on data and scenario support for impact and climate analysis (TGICA)