Ecology and Evolution

  2045-7758

  2045-7758

  Anh Quốc

Cơ quản chủ quản:  WILEY , John Wiley and Sons Ltd

Lĩnh vực:
Ecology, Evolution, Behavior and SystematicsEcologyNature and Landscape Conservation

Phân tích ảnh hưởng

Thông tin về tạp chí

 

Journals typically reject papers that do not fall within the scope of the journal. Ecology and Evolution is intentionally very broad. We accept descriptive studies. We accept work that is preliminary. We accept new opinions and ideas. Any research in ecology, evolution, or at the interface is acceptable. We do not distinguish between subfields of ecology or evolution – all are welcome. The journal will consider submissions across taxa in areas including but not limited to micro and macro ecological and evolutionary processes, characteristics of and interactions between individuals, populations, communities and the environment, physiological responses to environmental change, population genetics and phylogenetics, relatedness and kin selection, life histories, systematics and taxonomy, conservation genetics, extinction, speciation, adaption, behaviour, biodiversity, species abundance, macroecology, population and ecosystem dynamics, and conservation policy.

Các bài báo tiêu biểu

Identification of risk areas for <i>Orobanche cumana</i> and <i>Phelipanche aegyptiaca</i> in China, based on the major host plant and CMIP6 climate scenarios
Tập 12 Số 4 - 2022
Lu Zhang, Xiaolei Cao, Zhaoqun Yao, Xue “Snow” Dong, Meixiu Chen, Lifeng Xiao, Sifeng Zhao
AbstractParasitic broomrape of the genus Orobanche poses a formidable threat to producing many crops in Europe, Africa, and Asia. Orobanche cumana and Phelipanche aegyptiaca are two of China's most destructive root parasitic plants, causing extreme sunflower, tomato, melon, and tobacco damage. However, the potentially suitable areas of O. cumana and P. aegyptiaca in China have not been predicted, and little is known about the important environmental factors that affect their extension. Due to their invasiveness and economic importance, studying how climate change and host plants may affect broomrapes’ distribution is necessary. In the study, we first predicted the potentially suitable areas of the invasive weeds (O. cumana and P. aegyptiaca) and their susceptible host plants (Helianthus annuus and Solanum lycopersicon) using MaxEnt. Then, the risk zones and distribution shifts of two broomrapes under different climate conditions were identified by incorporating the distribution of their susceptible host plants. The results highlighted that the potential middle‐ and high‐risk zones for Ocumana and P. aegyptiaca amounted to 197.88 × 104 km2 and 12.90 × 104 km2, respectively. Notably, Xinjiang and Inner Mongolia were the highest‐risk areas within the distribution and establishment of O. cumana and P. aegyptiaca. Elevation and topsoil pH were the decisive factors for shaping O. cumana distribution; precipitation seasonality and annual precipitation were the dominant bioclimatic variables limiting the spread of P. aegyptiaca. The potentially suitable areas and risk zones of O. cumana would decrease significantly, and those of P. aegyptiaca would fluctuate slightly under future climate change scenarios. Overall, our study suggested that the two broomrapes’ risk zones will significantly northward to higher latitudes. The results will provide suggestions for preventing O. cumana and P. aegyptiaca.
Strong plastid degradation is consistent within section <i>Chondrophyllae</i>, the most speciose lineage of <i>Gentiana</i>
Tập 12 Số 8 - 2022
Peng‐Cheng Fu, Shi‐Long Chen, Shan‐Shan Sun, Adrien Favre
AbstractRecovering phylogenetic relationships in lineages experiencing intense diversification has always been a persistent challenge in evolutionary studies, including in Gentiana section Chondrophyllae sensu lato (s.l.). Indeed, this subcosmopolitan taxon encompasses more than 180 mostly annual species distributed around the world. We sequenced and assembled 22 new plastomes representing 21 species in section Chondrophyllae s.l. In addition to previously released plastome data, our study includes all main lineages within the section. We reconstructed their phylogenetic relationships based on protein‐coding genes and recombinant DNA (rDNA) cistron sequences, and then investigated plastome structural evolution as well as divergence time. Despite an admittedly humble species cover overall, we recovered a well‐supported phylogenetic tree based on plastome data, and found significant discordance between phylogenetic relationships and taxonomic treatments. Our results show that G. capitata and G. leucomelaena diverged early within the section, which is then further divided into two clades. The divergence time estimation showed that section Chondrophyllae s.l. evolved in the second half of the Oligocene. We found that section Chondrophyllae s.l. had the smallest average plastome size (128 KB) in tribe Gentianeae (Gentianaceae), with frequent gene and sequence losses such as the ndh complex and its flanking regions. In addition, we detected both expansion and contraction of the inverted repeat (IR) regions. Our study suggests that plastome degradation parallels the diversification of this group, and illustrates the strong discordance between phylogenetic relationships and taxonomic treatments, which now need to be carefully revised.
The Quaternary evolutionary history, potential distribution dynamics, and conservation implications for a Qinghai–Tibet Plateau endemic herbaceous perennial, <i>Anisodus tanguticus</i> (Solanaceae)
Tập 6 Số 7 - Trang 1977-1995 - 2016
Dongshi Wan, Jianju Feng, Dechun Jiang, Kangshan Mao, Yuan‐Wen Duan, Georg Miehe, Lars Opgenoorth
AbstractVarious hypotheses have been proposed about the Quaternary evolutionary history of plant species on the Qinghai–Tibet Plateau (QTP), yet only a handful of studies have considered both population genetics and ecological niche context. In this study, we proposed and compared climate refugia hypotheses based on the phylogeographic pattern of Anisodus tanguticus (three plastid DNA fragments and nuclear internal transcribed spacer regions from 32 populations) and present and past species distribution models (SDMs). We detected six plastid haplotypes in two well‐differentiated lineages. Although all haplotypes could be found in its western (sampling) area, only haplotypes from one lineage occurred in its eastern area. Meanwhile, most genetic variations existed between populations (FST = 0.822). The SDMs during the last glacial maximum and last interglacial periods showed range fragmentation in the western area and significant range contraction in the eastern area, respectively, in comparison with current potential distribution. This species may have undergone intraspecific divergence during the early Quaternary, which may have been caused by survival in different refugia during the earliest known glacial in the QTP, rather than geological isolation due to orogenesis events. Subsequently, climate oscillations during the Quaternary resulted in a dynamic distribution range for this species as well as the distribution pattern of its plastid haplotypes and nuclear genotypes. The interglacial periods may have had a greater effect on A. tanguticus than the glacial periods. Most importantly, neither genetic data nor SDM alone can fully reveal the climate refugia history of this species. We also discuss the conservation implications for this important Tibetan folk medicine plant in light of these findings and SDMs under future climate models. Together, our results underline the necessity to combine phylogeographic and SDM approaches in future investigations of the Quaternary evolutionary history of species in topographically complex areas, such as the QTP.
Homoploid hybridization of plants in the Hengduan mountains region
Tập 9 Số 14 - Trang 8399-8410 - 2019
Rui Yang, Ryan A. Folk, N. T. Zhang, Xun Gong
AbstractThe Hengduan Mountains Region (HMR) is a major global biodiversity hotspot. Complex tectonic and historical climatic conditions created opportunities for natural interspecific hybridization. Likewise, anthropogenic disturbance potentially raises the frequency of hybridization. Among species studies to date, the frequency of homoploid hybridization appears in the HMR. Of nine taxa in which natural hybridization has been detected, three groups are involved in homoploid hybrid speciation, and species pairs from the remaining six genera suggest that continuous gene flow occurs in hybrid zones. Reproductive isolation may greatly affect the dynamic and architecture of hybrid zones in the HMR. Asymmetrical hybridization and introgression can primarily be attributed to both prezygotic and postzygotic barriers. The frequent observation of such asymmetry may imply that reproductive barrier contributes to maintaining species boundaries in the alpine region. Ecological isolations with environmental disturbance may promote breeding barriers between parental species and hybrids. Hybrid zones may be an important phase for homoploid hybrid speciation. Hybrid zones potentially provided abundant genetic resources for the diversification of the HMR flora. The ecological and molecular mechanisms of control and mediation for natural hybridization will help biologists to understand the formation of biodiversity in the HMR. More researches from ecological and molecular aspects were required in future studies.
Quantitative evaluation of hybridization and the impact on biodiversity conservation
Tập 7 Số 1 - Trang 320-330 - 2017
Anna M. van Wyk, Desiré L. Dalton, Sean Hoban, Michael W. Bruford, Isa‐Rita M. Russo, Coral Birss, J. Paul Grobler, Bettine Jansen van Vuuren, Antoinette Kotzé
AbstractAnthropogenic hybridization is an increasing conservation threat worldwide. In South Africa, recent hybridization is threatening numerous ungulate taxa. For example, the genetic integrity of the near‐threatened bontebok (Damaliscus pygargus pygargus) is threatened by hybridization with the more common blesbok (D. p. phillipsi). Identifying nonadmixed parental and admixed individuals is challenging based on the morphological traits alone; however, molecular analyses may allow for accurate detection. Once hybrids are identified, population simulation software may assist in determining the optimal conservation management strategy, although quantitative evaluation of hybrid management is rarely performed. In this study, our objectives were to describe species‐wide and localized rates of hybridization in nearly 3,000 individuals based on 12 microsatellite loci, quantify the accuracy of hybrid assignment software (STRUCTURE and NEWHYBRIDS), and determine an optimal threshold of bontebok ancestry for management purposes. According to multiple methods, we identified 2,051 bontebok, 657 hybrids, and 29 blesbok. More than two‐thirds of locations contained at least some hybrid individuals, with populations varying in the degree of introgression. HYBRIDLAB was used to simulate four generations of coexistence between bontebok and blesbok, and to optimize a threshold of ancestry, where most hybrids will be detected and removed, and the fewest nonadmixed bontebok individuals misclassified as hybrids. Overall, a threshold Q‐value (admixture coefficient) of 0.90 would remove 94% of hybrid animals, while a threshold of 0.95 would remove 98% of hybrid animals but also 8% of nonadmixed bontebok. To this end, a threshold of 0.90 was identified as optimal and has since been implemented in formal policy by a provincial nature conservation agency. Due to widespread hybridization, effective conservation plans should be established and enforced to conserve native populations that are genetically unique.
Lineage‐specific plastid degradation in subtribe Gentianinae (Gentianaceae)
Tập 11 Số 7 - Trang 3286-3299 - 2021
Peng‐Cheng Fu, Shan‐Shan Sun, Alex D. Twyford, Bei‐Bei Li, Rui‐Qi Zhou, Shi‐Long Chen, Qingbo Gao, Adrien Favre
AbstractThe structure and sequence of plastid genomes is highly conserved across most land plants, except for a minority of lineages that show gene loss and genome degradation. Understanding the early stages of plastome degradation may provide crucial insights into the repeatability and predictability of genomic evolutionary trends. We investigated these trends in subtribe Gentianinae of the Gentianaceae, which encompasses ca. 450 species distributed around the world, particularly in alpine and subalpine environments. We sequenced, assembled, and annotated the plastomes of 41 species, representing all six genera in subtribe Gentianinae and all main sections of the species‐rich genus Gentiana L. We reconstructed the phylogeny, estimated divergence times, investigated the phylogenetic distribution of putative gene losses, and related these to substitution rate shifts and species’ habitats. We obtained a strongly supported topology consistent with earlier studies, with all six genera in Gentianinae recovered as monophyletic and all main sections of Gentiana having full support. While closely related species have very similar plastomes in terms of size and structure, independent gene losses, particularly of the ndh complex, have occurred in multiple clades across the phylogeny. Gene loss was usually associated with a shift in the boundaries of the small single‐copy and inverted repeat regions. Substitution rates were variable between clades, with evidence for both elevated and decelerated rate shifts. Independent lineage‐specific loss of ndh genes occurred at a wide range of times, from Eocene to Pliocene. Our study illustrates that diverse degradation patterns shape the evolution of the plastid in this species‐rich plant group.
Under what conditions do climate‐driven sex ratios enhance versus diminish population persistence?
Tập 4 Số 23 - Trang 4522-4533 - 2014
Maria Boyle, Jim Hone, Lisa E. Schwanz, Arthur Georges
AbstractFor many species of reptile, crucial demographic parameters such as embryonic survival and individual sex (male or female) depend on ambient temperature during incubation. While much has been made of the role of climate on offspring sex ratios in species with temperature‐dependent sex determination (TSD), the impact of variable sex ratio on populations is likely to depend on how limiting male numbers are to female fecundity in female‐biased populations, and whether a climatic effect on embryonic survival overwhelms or interacts with sex ratio. To examine the sensitivity of populations to these interacting factors, we developed a generalized model to explore the effects of embryonic survival, hatchling sex ratio, and the interaction between these, on population size and persistence while varying the levels of male limitation. Populations with TSD reached a greater maximum number of females compared to populations with GSD, although this was often associated with a narrower range of persistence. When survival depended on temperature, TSD populations persisted over a greater range of temperatures than GSD populations. This benefit of TSD was greatly reduced by even modest male limitation, indicating very strong importance of this largely unmeasured biologic factor. Finally, when males were not limiting, a steep relationship between sex ratio and temperature favoured population persistence across a wider range of climates compared to the shallower relationships. The opposite was true when males were limiting – shallow relationships between sex ratio and temperature allowed greater persistence. The results highlight that, if we are to predict the response of populations with TSD to climate change, it is imperative to 1) accurately quantify the extent to which male abundance limits female fecundity, and 2) measure how sex ratios and peak survival coincide over climate.
Strong male‐biased operational sex ratio in a breeding population of loggerhead turtles (<i>Caretta caretta</i>) inferred by paternal genotype reconstruction analysis
Tập 3 Số 14 - Trang 4736-4747 - 2013
Jacob A. Lasala, J. Scott Harrison, Kristina Williams, David C. Rostal
AbstractCharacterization of a species mating systems is fundamental for understanding the natural history and evolution of that species. Polyandry can result in the multiple paternity of progeny arrays. The only previous study of the loggerhead turtle (Caretta caretta) in the USA showed that within the large peninsular Florida subpopulation, multiple paternity occurs in approximately 30% of clutches. Our study tested clutches from the smaller northern subpopulation for the presence of multiple paternal contributions. We examined mothers and up to 20 offspring from 19.5% of clutches laid across three nesting seasons (2008–2010) on the small nesting beach on Wassaw Island, Georgia, USA. We found that 75% of clutches sampled had multiple fathers with an average of 2.65 fathers per nest (1–7 fathers found). The average number of fathers per clutch varied among years and increased with female size. There was no relationship between number of fathers and hatching success. Finally, we found 195 individual paternal genotypes and determined that each male contributed to no more than a single clutch over the 3‐year sampling period. Together these results suggest that the operational sex ratio is male‐biased at this site.
Sperm storage and spermatozoa interaction with epithelial cells in oviduct of Chinese soft‐shelled turtle, <i>Pelodiscus sinensis</i>
Tập 5 Số 15 - Trang 3023-3030 - 2015
Shaofan Chen, Linli Zhang, Yuan Le, Yasir Waqas, Wei Chen, Qian Zhang, Shakeeb Ullah, Tengfei Liu, Lisi Hu, Quanfu Li, Ping Yang
AbstractSpermatozoa are known to be stored within the female genital tract after mating in various species to optimize timing of reproductive events such as copulation, fertilization, and ovulation. The mechanism supporting long‐term sperm storage is still unclear in turtles. The aim of this study was to investigate the interaction between the spermatozoa and oviduct in Chinese soft‐shelled turtle by light and electron microscopy to reveal the potential cytological mechanism of long‐term sperm storage. Spermatozoa were stored in isthmus, uterine, and vagina of the oviduct throughout the year, indicating long‐term sperm storage in vivo. Sperm heads were always embedded among the cilia and even intercalated into the apical hollowness of the ciliated cells in the oviduct mucosal epithelium. The stored spermatozoa could also gather in the gland conduit. There was no lysosome distribution around the hollowness of the ciliated cell, suggesting that the ciliated cells of the oviduct can support the spermatozoa instead of phagocytosing them in the oviduct. Immune cells were sparse in the epithelium and lamina propria of oviduct, although few were found inside the blood vessel of mucosa, which may be an indication of immune tolerance during sperm storage in the oviduct of the soft‐shelled turtle. These characteristics developed in the turtle benefited spermatozoa survival for a long time as extraneous cells in the oviduct of this species. These findings would help to improve the understanding of reproductive regularity and develop strategies of species conservation in the turtle. The Chinese soft‐shelled turtle may be a potential model for uncovering the mechanism behind the sperm storage phenomenon.
Marine ecosystem connectivity mediated by migrant–resident interactions and the concomitant cross‐system flux of lipids
Tập 6 Số 12 - Trang 4076-4087 - 2016
Mikael van Deurs, Anders Persson, Martin Lindegren, Charlotte Jacobsen, Stefan Neuenfeldt, Christian Jørgensen, P. Anders Nilsson
AbstractAccumulating research argues that migrants influence the functioning and productivity of local habitats and ecosystems along migration routes and potentially drive cross‐system energy fluxes of considerable magnitude, yet empirical documentation of local ecological effects and descriptions of the underlying mechanisms are surprisingly rare. In this study, we discovered migrant–resident interactions and substantial cross‐system lipid transportation in the transition zone between the Baltic Sea and the North Sea where a resident cod population (predators) was found to interact with a herring population (prey) on a seasonal basis. We traced the lipids, using fatty acid trophic markers (FATM), from the herring feeding grounds in the North Sea to the cod livers in the Western Baltic Sea. Time series analysis of population dynamics indicated that population‐level production of cod is positively affected by the herring subsidies. However, the underlying mechanisms were more complicated than anticipated. During the herring season, large cod received most of its dietary lipids from the herring, whereas smaller cod were prevented from accessing the lipid pool due to a mismatch in predator–prey size ratio. Furthermore, while the herring were extremely rich in bulk energy, they were surprisingly poor in a specific functional fatty acid. Hence, our study was the first to illustrate how the magnitude cross‐system fluxes of subsidies in migrant–resident systems are potentially constrained by the size structure of the resident predator population and the nutritional quality of the migrants.