The fate of the Arctic seaweed Fucus distichus under climate change: an ecological niche modeling approach

Ecology and Evolution - Tập 6 Số 6 - Trang 1712-1724 - 2016
Alexander Jueterbock1, Irina Smolina1, James A. Coyer2, Galice Hoarau1
1Faculty of Biosciences and Aquaculture Nord University Universitetsalleen 11 8049 Bodø Norway
2Shoals Marine Laboratory, University of New Hampshire, Durham, New Hampshire, 03824 USA

Tóm tắt

Abstract

Rising temperatures are predicted to melt all perennial ice cover in the Arctic by the end of this century, thus opening up suitable habitat for temperate and subarctic species. Canopy‐forming seaweeds provide an ideal system to predict the potential impact of climate‐change on rocky‐shore ecosystems, given their direct dependence on temperature and their key role in the ecological system. Our primary objective was to predict the climate‐change induced range‐shift of Fucus distichus, the dominant canopy‐forming macroalga in the Arctic and subarctic rocky intertidal. More specifically, we asked: which Arctic/subarctic and cold‐temperate shores of the northern hemisphere will display the greatest distributional change of Fdistichus and how will this affect niche overlap with seaweeds from temperate regions? We used the program MAXENT to develop correlative ecological niche models with dominant range‐limiting factors and 169 occurrence records. Using three climate‐change scenarios, we projected habitat suitability of Fdistichus – and its niche overlap with three dominant temperate macroalgae – until year 2200. Maximum sea surface temperature was identified as the most important factor in limiting the fundamental niche of Fdistichus. Rising temperatures were predicted to have low impact on the species' southern distribution limits, but to shift its northern distribution limits poleward into the high Arctic. In cold‐temperate to subarctic regions, new areas of niche overlap were predicted between Fdistichus and intertidal macroalgae immigrating from the south. While climate‐change threatens intertidal seaweeds in warm‐temperate regions, seaweed meadows will likely flourish in the Arctic intertidal. Although this enriches biodiversity and opens up new seaweed‐harvesting grounds, it will also trigger unpredictable changes in the structure and functioning of the Arctic intertidal ecosystem.

Từ khóa


Tài liệu tham khảo

ACIA, 2004, Impacts of a warming arctic: arctic climate impact assessment

Adey W. H., 2005, The biogeographic structure of the western North Atlantic rocky intertidal, Cryptogam. Algol., 26, 35

10.1111/j.1529-8817.2008.00605.x

10.1109/TAC.1974.1100705

10.1111/j.1365-2699.2010.02412.x

10.1126/science.1112418

10.1038/nature09678

10.1007/978-3-642-28451-9_18

10.1515/BOT.2009.079

10.2216/i0031-8884-15-1-79.1

10.1038/ngeo467

Bokn T., 1978, Long‐term changes in fucoid association of the inner Oslofjord, Norway, Nord. J. Bot., 25, 9

Bokn T., 1992, Changes in fucoid distributions and abundances in the inner Oslofjord, Norway: 1974–80 versus 1988–90, Acta Phytogeogr. Suec., 78, 117

10.1073/pnas.0812300106

10.1007/BF02366043

10.1007/978‐_94‐_009‐_2003‐_3_9

10.1016/j.cub.2009.05.046

10.1002/ece3.1105

10.1126/science.1210288

10.1016/S0272-7714(03)00079-9

10.3354/meps08351

10.3354/meps300063

Corripio J. G.2014.R package insol: Solar Radiation version 1.1.1.https://cran.r-project.org/web/packages/insol/index.html

10.1098/rspb.2002.2093

10.1046/j.1365-294X.2003.01850.x

10.1016/j.ympev.2006.01.019

10.1080/09670260600652820

10.1111/j.1365-2699.2010.02437.x

10.1126/science.1237123

10.1146/annurev.pp.39.060188.001105

10.1046/j.0269-8463.2001.00559.x

10.1007/BF00390636

10.1146/annurev.ecolsys.110308.120159

10.1111/j.2041-210X.2010.00036.x

10.14430/arctic3676

10.1017/S0376892997000088

Forslund H.2009.Grazing and the geographical range of seaweeds. The introduced Fucus evanescens and the newly described Fucus radicans. [Licentiate thesis]. Stockholm University Stockholm.

10.1016/S0304-3800(00)00354-9

10.1111/j.1529-8817.2012.01224.x

Hijmans R. J.2015.R package raster: Geographic data analysis and modeling version 2.3‐40.https://cran.r-project.org/web/packages/raster/index.html

Hijmans R. J. S.Phillips J.Leathwick andJ.Elith.2015.R package dismo: species distribution modeling version 1.0‐12.https://cran.r-project.org/web/packages/dismo/index.html

10.1002/aqc.628

10.1098/rsos.140538

10.2216/i0031-8884-14-4-317.1

Hylmö D. E., 1933, Algenimmigration nach der schwedischen Westküste, Bot. Notiser, 00, 377

10.1016/j.ecss.2007.10.006

Jiménez‐Valverde A., 2012, Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species, Ecology, 5, 498

10.1007/s10530-011-9976-z

10.1890/03-0245

Jueterbock A.2015.R package MaxentVariableSelection: selecting the Best Set of Relevant Environmental Variables along with the Optimal Regularization Multiplier for Maxent Niche Modeling.https://cran.r-project.org/web/packages/MaxentVariableSelection/index.html

10.1002/ece3.541

10.1515/BOT.2009.077

10.1139/B08-056

10.1016/j.jtrangeo.2011.08.006

10.1371/journal.pone.0143795

10.1029/2011GL048856

Lüning K., 1990, Seaweeds: their environment, biogeography, and ecophysiology

10.1139/er-2015-0040

10.1139/b74-121

Meehl G. A., 2007, Climate Change 2007: the physical science basis: contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, 749

10.1016/j.seares.2014.11.004

10.1515/BOT.2009.080

Müller R., 2010, Biology of polar benthic algae, 237, 10.1515/9783110229714.4.237

Munda I. M., 2004, The structure and distribution of Fucacean Associations in the Icelandic Coastal Area, Acta Bot. Island., 14, 103

Nakicenovic N., 2000, IPCC 2000: special report on emissions scenarios: a special report of Working Group III of the Intergovernmental Panel on Climate Change

10.1186/1741-7007-11-6

10.1007/s00227-014-2471-1

10.1038/nature01286

10.1111/j.1365-2745.2009.01481.x

10.1126/science.1111322

10.1111/j.0906-7590.2008.5203.x

10.1890/07-2153.1

10.1038/nclimate1958

10.1017/S002531540001688X

10.1111/j.1529-8817.1986.tb04170.x

10.1055/s-2003-42716

10.1515/botm.1994.37.5.471

Serrão E. A., 1997, Gamete dispersal and pre‐recruitment mortality in baltic Fucus vesiculosus, Phycologia, 36, 388

Simmons H. G., 1989, Algologiska notiser. II. Einige Algenfunde bei Drøbak, Bot. Notiser, 00, 117

10.1098/rsos.150429

10.3354/meps278089

10.1111/j.1751-8369.2002.tb00072.x

10.1111/j.1751-8369.2002.tb00087.x

10.1201/9781420037449.ch7

10.1007/BF00392496

10.1242/jeb.038034

10.1111/j.1466-8238.2011.00656.x

Verbruggen H.2012a.OccurrenceThinner http://phycoweb.net/software/OccurrenceThinner. version 1.04.

Verbruggen H.2012b.RasterTools: moveCoordinatesToClosestDataPixel.jar Java script. version 1.03.

Wand M.2014.R package KernSmooth: Functions for kernel smoothing for Wand & Jones (1995) version 2.23‐13.https://cran.r-project.org/web/packages/KernSmooth/index.html

10.1890/10-1171.1

10.1111/j.1558-5646.2008.00482.x

10.1111/j.1600-0587.2009.06142.x

10.1111/ddi.12160

10.1007/s12526-010-0073-9

Widdowson T. B., 1971, A taxonomic revision of the genus Alaria Greville, Syesis, 4, 11

10.1007/978-3-642-28451-9_13

10.1073/pnas.0901639106

10.1023/B:BINV.0000022132.00398.14

10.1515/BOT.2002.054