DARU Journal of Pharmaceutical Sciences

Công bố khoa học tiêu biểu

* Dữ liệu chỉ mang tính chất tham khảo

Sắp xếp:  
Protective and therapeutic effects of Scutellaria baicalensis and its main active ingredients baicalin and baicalein against natural toxicities and physical hazards: a review of mechanisms
DARU Journal of Pharmaceutical Sciences - Tập 30 - Trang 351-366 - 2022
Ali Ahmadi, Zoha Mortazavi, Soghra Mehri, Hossein Hosseinzadeh
Scutellaria baicalensis (SB) has been traditionally used to combat a variety of conditions ranging from ischemic heart disease to cancer. The protective effects of SB are due to the action of two main flavonoids baicalin (BA) and baicalein (BE). This paper aimed to provide a narrative review of the protective and antidotal effects of SB and its main constituents against natural toxicities and physical hazards. Scientific databases Medline, Scopus, and Web of Science were thoroughly searched, based on different keywords for in vivo, in vitro and clinical studies which reported protective or therapeutic effects of SB or its constituents in natural and physical toxicities. Numerous studies have reported that treatment with BE, BA, or total SB extract prevents or counteracts the detrimental toxic effects of various natural compounds and physical hazards. The toxic agents include mycotoxins, lipopolysaccharide, multiple plants and animal-derived substances as well as physical factors which negatively affected vital organs such as CNS, liver, kidneys, lung and heart. Increasing the expression of radical scavenging enzymes and glutathione content as well as inhibition of pro-inflammatory cytokines and pro-apoptotic mediators were important mechanisms of action. Different studies on the Chinese skullcap have exhibited that its total root extract, BA or BE can act as potential antidotes or protective agents against the damage induced by natural toxins and physical factors by alleviating oxidative stress and inflammation. However, the scarcity of high-quality clinical evidence means that further clinical studies are required to reach a more definitive conclusion.
Isotretinoin-associated Sweet’s syndrome: a case report
DARU Journal of Pharmaceutical Sciences - Tập 22 - Trang 1-4 - 2014
Jamileh Moghimi, Daryiush Pahlevan, Maryam Azizzadeh, Hamid Hamidi, Mohsen Pourazizi
Sweet’s syndrome (SS) is characterized by various clinical symptoms, physical features, and pathological findings. Although cases of SS are very rare, there has been an increase in the incidence of drug-induced SS. Till date, there have been only few reported cases of isotretinoin-induced SS. In this report, we describe the case of a 19-year-old girl who developed SS after systemic treatment with oral isotretinoin for nodulocystic acne. The findings of this report emphasize the importance of evaluating isotretinoin as a possible, though uncommon, cause of SS and replacing it with another treatment if its involvement is suspected.
Improved activity and expression of recombinant human factor IX by propeptide engineering
DARU Journal of Pharmaceutical Sciences - Tập 27 - Trang 653-660 - 2019
Jafar Vatandoost, Mettine H. A. Bos
The main therapeutic strategy for Hemophilia B patients involves the administration of recombinant coagulation factors IX (rFIX). Although there are various approaches to increasing the activity of rFIX, targeted protein engineering of specific residues could result in increased rFIX activity through enhanced γ-carboxylation. Specific amino acids in the propeptide sequence of vitamin K-dependent proteins are known to play a role in the interaction with the enzyme γ-carboxylase. The net hydrophobicity and charge of the γ-carboxylic recognition site (γ-CRS) region in the propeptide are important determinants of γ-carboxylase binding. So the contribution of individual γ-CRS residues to the expression of fully γ-carboxylated and active FIX was studied. Propeptide residues at positions −14, −13, or − 12 were substituted for equivalent prothrombin amino acids by SEOing PCR. The recombinant FIX variants were transfected and stably expressed in Drosophila S2 cells, and the expression of both total FIX protein and active FIX was assessed. While overall the substitutions resulted in an increase of both total FIX protein expression as well as an increase in the portion of active FIX, the highest increase in FIX protein expression, FIX activity, and specific FIX activity was observed following the simultaneous substitution of residues at positions −12, −13, and − 14. The enhanced rFIX activity was further confirmed by enrichment for functional, fully γ-carboxylated rFIX species via barium citrate adsorption. Our findings indicate that by increasing both the net charge and the net hydrophobicity of the FIX γ-CRS region, the expression of fully γ-carboxylated and as such active FIX is enhanced.
Development of a validated UPLC-qTOF-MS Method for the determination of curcuminoids and their pharmacokinetic study in mice
DARU Journal of Pharmaceutical Sciences - Tập 21 - Trang 1-10 - 2013
Mahendra K Verma, Ishtiyaq A Najar, Manoj K Tikoo, Gurdarshan Singh, Devinder K Gupta, Rajneesh Anand, Ravi K Khajuria, Subhash C Sharma, Rakesh K Johri
A specific and sensitive UPLC-qTOF-MS/MS method has been developed for the simultaneous determination of curcuminoids. These Curcuminoids comprises of curcumin, a principal curcuminoid and other two namely, demethoxycurcumin, and bisdemethoxycurcumin obtained from rhizomes of Curcuma longa an ancient Indian curry spice turmeric, family (Zingiberaceae). These analytes were separated on a reverse phase C18 column by using a mobile phase of acetonitrile: 5% acetonitrile in water with 0.07% acetic acid (75:25 v/v), flow rate of 100 μL/min was maintained. The qTOF-MS was operated under multiple reaction monitoring (MRM) mode using electro-spray ionization (ESI) technique with positive ion polarity. The major product ions in the positive mode for curcuminoids were at m/z 369.1066, 339.1023 and 309.0214 respectively. The recovery of the analytes from mouse plasma was optimized using solid phase extraction technique. The total run time was 5 min and the peaks of the compounds, bisdemethoxycurcumin, demethoxycurcumin and curcumin occurred at 2.06, 2.23 and 2.40 min respectively. The calibration curves of bisdemethoxycurcumin, demethoxycurcumin and curcumin were linear over the concentration range of 2–1000 ng/mL (r2, 0.9951), 2–1000 ng/mL (r2, 0.9970) and 2-1000 ng/mL (r2, 0.9906) respectively. Intra-assay and inter-assay accuracy in terms of % bias for curcumin was in between −7.95to +6.21, and −7.03 to + 6.34; for demethoxycurcumin was −6.72 to +6.34, and −7.86 to +6.74 and for bisdesmetoxycurcumin was −8.23 to +6.37 and −8.47 to +7.81. The lower limit of quantitation for curcumin, demethoxycurcumin and bisdemethoxycurcumin was 2.0 ng/mL. Analytes were stable under various conditions (in autosampler, during freeze-thaw, at room temperature, and under deep-freeze conditions). This validated method was used during pharmacokinetic studies of curcumin in the mouse plasma. A specific, accurate and precise UPLC-qTOF-MS/MS method for the determination of curcumin, demethoxycurcumin and bisdemethoxycurcumin both individually and simultaneously was optimized.
Simultaneous detection of bovine and porcine DNA in pharmaceutical gelatin capsules by duplex PCR assay for Halal authentication
DARU Journal of Pharmaceutical Sciences - Tập 25 - Trang 1-11 - 2017
Jafar Nikzad, Soraya Shahhosseini, Maryam Tabarzad, Nastaran Nafissi-Varcheh, Maryam Torshabi
In the pharmaceutical industry, hard- and soft-shelled capsules are typically made from gelatin, commonly derived from bovine and porcine sources. To ensure that pharmaceutical products comply with halal regulations in Muslim countries (no porcine products allowed), development of a valid, reliable, quick, and most importantly, cost-effective tests are of utmost importance. We developed a species-specific duplex polymerase chain reaction (PCR) assay targeting 149 bp porcine and 271 bp bovine mitochondrial DNA (mtDNA) to simultaneously detect both porcine and bovine DNA (in one reaction at the same time) in gelatin. Some additional simplex PCR tests (targeting 126 bp bovine and 212 bp porcine mtDNA) and real-time PCR using a commercially available kit (for identification of porcine DNA) were used to verify the selectivity and sensitivity of our duplex PCR. After optimization of DNA extraction and PCR methods, hard/soft pharmaceutical gelatin capsules (containing drug) were tested for the presence of porcine and/or bovine DNA. Duplex PCR detected the presence of as little as 0.1% porcine DNA, which was more accurate than the commercially available kit. Of all gelatin capsules tested (n = 24), 50% contained porcine DNA (pure porcine gelatin alone or in combination with bovine gelatin). Duplex PCR presents an easy-to-follow, quick, low-cost and reliable method to simultaneously detect porcine and bovine DNAs (>100 bp) in minute amounts in highly processed gelatin-containing pharmaceutical products (with a 0.1% sensitivity for porcine DNA) which may be used for halal authentication. Simultaneous detection of porcine and bovine DNA in gelatin capsules by duplex PCR
Paclitaxel incorporated exosomes derived from glioblastoma cells: comparative study of two loading techniques
DARU Journal of Pharmaceutical Sciences - Tập 27 - Trang 533-539 - 2019
Soodeh Salarpour, Hamid Forootanfar, Mostafa Pournamdari, Meysam Ahmadi-Zeidabadi, Marzie Esmaeeli, Abbas Pardakhty
Exosomes are natural nanoparticles that are involved in intercellular communication via transferring molecular information between cells. Recently, exosomes have been considered for exploitation as novel drug delivery systems due to their specific properties for carrying specific molecules and surface proteins. In this study, U-87 cell derived exosomes have been investigated for delivery of a potent chemotherapeutic agent, paclitaxel (PTX). Two methods of loading were utilized to incorporate PTX in exosomes and the exosomes pharmaceutical and cytotoxic characterizations were determined. The drug loaded and empty exosomes were found to have particle size of 50–100 nm and zeta potential of ≈ − 20 mV. Loading capacity of 7.4 ng and 9.2 ng PTX into 1 μg of exosome total protein were also measured for incubation and sonication methods, respectively. Incorporation of PTX into exosomes significantly increased its cytotoxicity against U-87 cell line (59.92% cell viability) while it was found that the empty exosomes exhibited cell viability of 91.98%. Loading method could affect the loading capacity of exosomes and their encapsulated chemotherapeutic molecule showed higher cytotoxicity into exosomes. These results promise exosomes as appropriate drug delivery system for glioblastoma multiform (GBM) treatment.
The analgesic potential of glycosides derived from medicinal plants
DARU Journal of Pharmaceutical Sciences - - 2020
Haroon Khan, Aini Pervaiz, Sebastiano Intagliata, Nilanjan Das, Nagulapalli Venkata Kc, Atanas G. Atanasov, Agnieszka Najda, Nabavi Sm, D Wang, Pittalà, Anupam Bishayee
In vitro investigation of the effects of boron nitride nanotubes and curcumin on DNA damage
DARU Journal of Pharmaceutical Sciences - Tập 27 - Trang 203-218 - 2019
Tuğbagül Çal, Ülkü Ündeğer Bucurgat
Stem cells provide an opportunity to analyse the effects of xenobiotic on cell viability, differentiation and cell functions. Evaluation of the possible cytotoxic and DNA damaging effects on bone marrow CD34+ stem cells is important for their ability to differentiate into blood cells, and also for bone marrow diseases therapy. Boron nitride nanotubes and curcumin are potential nanoformulation agents that can be used together in the treatment of cancer or bone marrow diseases. Therefore, it is important to evaluate their possible effects on different cell lines. In this study, it was aimed to evaluate the cytotoxic and DNA damaging effects of boron nitride nanotubes which are commonly used in pyroelectric, piezoelectric and optical applications, but there is not enough information about its biocompatibility. Also, it was intended to research the effects of curcumin being used frequently in treatment processes for antioxidant properties. The possible cytotoxic and DNA damaging effects of boron nitride nanotubes and curcumin on CD34+ cells, HeLa and V79 cells were evaluated by MTT assay and Comet assay, respectively. Boron nitride nanotubes and curcumin had cytotoxic effects and cause DNA damage on CD34+ cells, HeLa and V79 cells at several concentrations, probably because of increased ROS level. However, there were not concentration - dependent effect and there were controversial toxicity results of the studied cell lines. Its mechanism needs to be enlightened by further analysis for potential targeted drug development.
Design, synthesis, and biological evaluation of polyphenols with 4,6-diphenylpyrimidin-2-amine derivatives for inhibition of Aurora kinase A
DARU Journal of Pharmaceutical Sciences - Tập 27 Số 1 - Trang 265-281 - 2019
Young Han Lee, Jihyun Park, Seunghyun Ahn, Jun-Ho Lee, Soon Young Shin, Dongsoo Koh, Yoongho Lim
Hydroxylation index of omeprazole in relation to CYP2C19 polymorphism and sex in a healthy Iranian population
DARU Journal of Pharmaceutical Sciences - Tập 22 - Trang 1-9 - 2014
Maryam Payan, Mohammad Reza Rouini, Nader Tajik, Mohammad Hossein Ghahremani, Reza Tahvilian
Polymorphism of CYP2C19 gene is one of the important factors in pharmacokinetics of CYP2C19 substrates. Omeprazole is a proton pump inhibitor which is mainly metabolized by cytochrome P450 2C19 (CYP2C19). The aim of present study was to assess omeprazole hydroxylation index as a measure of CYP2C19 activity considering new variant allele (CYP2C19*17) in Iranian population and also to see if this activity is sex dependent. One hundred and eighty healthy unrelated Iranian individuals attended in this study. Blood samples for genotyping and phenotyping were collected 3 hours after administration of 20 mg omeprazole orally. Genotyping of 2C19 variant alleles *2, *3 and *17 was performed by using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and semi-nested PCR methods. Plasma concentrations of omeprazole and hydroxyomeprazole were determined by high performance liquid chromatography (HPLC) technique and hydxroxylation index (HI) (omeprazole/ hydroxyomeprazole) was calculated. The CYP2C19*17 was the most common variant allele in the studied population (21.6%). Genotype frequencies of CYP2C19*17*17, *1*17, and *2*17 were 5.5%, 28.8% and 3.3% respectively. The lowest and the highest median omeprazole HI was observed in *17*17 and *2*2 genotypes respectively (0.36 vs. 13.09). The median HI of omeprazole in subjects homozygous for CYP2C19*1 was 2.16-fold higher than individuals homozygous for CYP2C19*17 (P < 0.001) and the median HI of CYP2C19*1*17 genotype was 1.98-fold higher than CYP2C19 *17*17 subjects (P < 0.001). However, subjects with CYP2C19*2*17 (median HI: 1.74) and CYP2C19*1*2 (median HI: 1.98) genotypes and also CYP2C19*1*17 (median HI: 0.71) and CYP2C19*1*1 (mean HI: 0.78) did not show any significantly different enzyme activity. In addition, no statistically significant difference was found between women and men in distribution of CYP2C19 genotypes. Furthermore, the hydroxylation index of Omeprazole was not different between women and men in the studied population. Our data point out the importance of CYP2C19*2 and CYP2C19*17 variant alleles in metabolism of omeprazole and therefore CYP2C19 activity. Regarding the high frequency of CYP2C19*17 in Iranian population, the importance of this new variant allele in metabolism of CYP2C19 substrates shall be considered.
Tổng số: 472   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 10