Mô Hình PBPK Dự Đoán Tương Tác Thuốc Qua CYP3A4 và P-gp: Mạng Lưới Mô Hình của Rifampicin, Itraconazole, Clarithromycin, Midazolam, Alfentanil, và Digoxin Tập 7 Số 10 - Trang 647-659 - 2018
Nina Hanke, Sebastian Frechen, Daniel Moj, Hannah Britz, Thomas Eißing, Thomas Wendl, Thorsten Lehr
Theo các tài liệu hướng dẫn hiện tại của Cơ quan Quản lý Thực phẩm và Dược phẩm Hoa Kỳ (FDA) và Cơ quan Dược phẩm Châu Âu (EMA), mô hình dược động học dựa trên sinh lý (PBPK) là một công cụ mạnh mẽ để khám phá và dự đoán định lượng tương tác thuốc-thuốc (DDI) và có thể cung cấp một phương án thay thế cho các thử nghiệm lâm sàng chuyên dụng. Nghiên cứu này cung cấp các mô hình PBPK toàn cơ thể của rifampicin, itraconazole, clarithromycin, midazolam, alfentanil và digoxin trong khuôn khổ Bộ Phần Mềm Dược Học Hệ Thống Mở (OSP). Tất cả các mô hình được xây dựng độc lập, kết hợp với các thông số tương tác đã được báo cáo, và được đánh giá lẫn nhau để xác minh hiệu suất dự đoán của chúng bằng cách mô phỏng các nghiên cứu DDI lâm sàng đã công bố. Tổng cộng có 112 nghiên cứu đã được sử dụng để phát triển mô hình và 57 nghiên cứu dùng để dự đoán DDI. 93% tỷ lệ diện tích dưới đường cong của nồng độ huyết tương theo thời gian (AUC) dự đoán và 94% tỷ lệ nồng độ đỉnh huyết tương (Cmax) nằm trong hai lần giá trị quan sát được. Nghiên cứu này đặt nền tảng cho việc đánh giá nền tảng OSP về các dự đoán PBPK đáng tin cậy đối với DDI do enzym và vận chuyển dang môi trong quá trình phát triển thuốc được thông tin bằng mô hình. Tất cả các mô hình được trình bày đều là mã nguồn mở và được tài liệu hóa minh bạch.
#Mô hình PBPK #tương tác thuốc #Rifampicin #Itraconazole #Clarithromycin #Midazolam #Alfentanil #Digoxin #FDA #EMA #Dự đoán CYP3A4 #P-gp #Mô hình dược động học.
Open Systems Pharmacology Community—An Open Access, Open Source, Open Science Approach to Modeling and Simulation in Pharmaceutical Sciences Tập 8 Số 12 - Trang 878-882 - 2019
Jörg Lippert, Rolf Burghaus, Andrea N. Edginton, Sebastian Frechen, Mats O. Karlsson, Andreas Kovar, Thorsten Lehr, Peter Milligan, Valerie Nock, Sergej Ramusovic, Matthew Riggs, Stephan Schaller, Jan Schlender, Stephan Schmidt, Michaël Sevestre, Erik Sjögren, Juri Solodenko, Alexander Staab, Donato Teutonico
A Generic Integrated Physiologically based Whole‐body Model of the Glucose‐Insulin‐Glucagon Regulatory System Tập 2 Số 8 - Trang 1-10 - 2013
Stephan Schaller, Stefan Willmann, Jörg Lippert, Julia K. Mader, Thomas R. Pieber, Andreas Schuppert, Thomas Eißing
Models of glucose metabolism are a valuable tool for fundamental and applied medical research in diabetes. Use cases range from pharmaceutical target selection to automatic blood glucose control. Standard compartmental models represent little biological detail, which hampers the integration of multiscale data and confines predictive capabilities. We developed a detailed, generic physiologically based whole‐body model of the glucose‐insulin‐glucagon regulatory system, reflecting detailed physiological properties of healthy populations and type 1 diabetes individuals expressed in the respective parameterizations. The model features a detailed representation of absorption models for oral glucose, subcutaneous insulin and glucagon, and an insulin receptor model relating pharmacokinetic properties to pharmacodynamic effects. Model development and validation is based on literature data. The quality of predictions is high and captures relevant observed inter‐ and intra‐individual variability. In the generic form, the model can be applied to the development and validation of novel diabetes treatment strategies.
CPT: Pharmacometrics & Systems Pharmacology (2013) 2, e65; doi:10.1038/psp.2013.40; published online 14 August 2013
<scp>Quantitative Systems Pharmacology</scp>and<scp>Physiologically‐Based Pharmacokinetic</scp>Modeling With mrgsolve: A Hands‐On Tutorial Tập 8 Số 12 - Trang 883-893 - 2019
Ahmed Elmokadem, Matthew M. Riggs, Kyle T. Baron
mrgsolve is an open‐source R package available on the Comprehensive R Archive Network. It combines R and C++ coding for simulation from hierarchical, ordinary differential equation–based models. Its efficient simulation engine and integration into a parallelizable, R‐based workflow makes mrgsolve a convenient tool both for simple and complex models and thus is ideal for physiologically‐based pharmacokinetic (PBPK) and quantitative systems pharmacology (QSP) model. This tutorial will first introduce the basics of the mrgsolve simulation workflow, including model specification, the introduction of interventions (dosing events) into the simulation, and simulated results postprocessing. An applied simulation example is then presented using aPBPKmodel for voriconazole, including a model validation step against adult and pediatric data sets. A final simulation example is then presented using a previously publishedQSPmodel for mitogen‐activated protein kinase signaling in colorectal cancer, illustrating population simulation of different combination therapies.
Physiologically‐Based Pharmacokinetic Modeling Analysis for Quantitative Prediction of Renal Transporter–Mediated Interactions Between Metformin and Cimetidine Tập 8 Số 6 - Trang 396-406 - 2019
Kyoko Nishiyama, Kota Toshimoto, Wooin Lee, Naoki Ishiguro, Bojan Bister, Yuichi Sugiyama
Metformin is an important antidiabetic drug and often used as a probe for drug–drug interactions (DDIs) mediated by renal transporters. Despite evidence supporting the inhibition of multidrug and toxin extrusion proteins as the likely DDI mechanism, the previously reported physiologically‐based pharmacokinetic (PBPK) model required the substantial lowering of the inhibition constant values of cimetidine for multidrug and toxin extrusion proteins from those obtained in vitro to capture the clinical DDI data between metformin and cimetidine.1 We constructed new PBPK models in which the transporter‐mediated uptake of metformin is driven by a constant membrane potential. Our models successfully captured the clinical DDI data using in vitro inhibition constant values and supported the inhibition of multidrug and toxin extrusion proteins by cimetidine as the DDI mechanism upon sensitivity analysis and data fitting. Our refined PBPK models may facilitate prediction approaches for DDI involving metformin using in vitro inhibition constant values.
A Quantitative Systems Pharmacology Kidney Model of Diabetes Associated Renal Hyperfiltration and the Effects of <scp>SGLT</scp> Inhibitors Tập 7 Số 12 - Trang 788-797 - 2018
Pavel Balazki, Stephan Schaller, Thomas Eißing, Thorsten Lehr
The early stage of diabetes mellitus is characterized by increased glomerular filtration rate (GFR), known as hyperfiltration, which is believed to be one of the main causes leading to renal injury in diabetes. Sodium‐glucose cotransporter 2 inhibitors (SGLT2i) have been shown to be able to reverse hyperfiltration in some patients. We developed a mechanistic computational model of the kidney that explains the interplay of hyperglycemia and hyperfiltration and integrates the pharmacokinetics/pharmacodynamics (PK/PD) of the SGLT2i dapagliflozin. Based on simulation results, we propose kidney growth as the necessary process for hyperfiltration progression. Further, the model indicates that renal SGLT1i could significantly improve hyperfiltration when added to SGTL2i. Integrated into a physiologically based PK/PD (PBPK/PD) Diabetes Platform, the model presents a powerful tool for aiding drug development, prediction of hyperfiltration risk, and allows the assessment of the outcomes of individualized treatments with SGLT1‐inhibitors and SGLT2‐inhibitors and their co‐administration with insulin.
Modeling the bacterial dynamics in the gut microbiota following an antibiotic‐induced perturbation Tập 11 Số 7 - Trang 906-918 - 2022
Jinju Guk, Antoine Bridier‐Nahmias, Aude Bernheim, Nathalie Grall, Xavier Duval, Olivier Clermont, Étienne Ruppé, Camille d’Humières, Olivier Tenaillon, Érick Denamur, France Mentré, Jérémie Guedj, Charles Burdet
AbstractRecent studies have highlighted the importance of ecological interactions in dysbiosis of gut microbiota, but few focused on their role in antibiotic‐induced perturbations. We used the data from the CEREMI trial in which 22 healthy volunteers received a 3‐day course of ceftriaxone or cefotaxime antibiotics. Fecal samples were analyzed by 16S rRNA gene profiling, and the total bacterial counts were determined in each sample by flux cytometry. As the gut exposure to antibiotics could not be experimentally measured despite a marked impact on the gut microbiota, it was reconstructed using the counts of susceptible Escherichia coli. The dynamics of absolute counts of bacterial families were analyzed using a generalized Lotka–Volterra equations and nonlinear mixed effect modeling. Bacterial interactions were studied using a stepwise approach. Two negative and three positive interactions were identified. Introducing bacterial interactions in the modeling approach better fitted the data, and provided different estimates of antibiotic effects on each bacterial family than a simple model without interaction. The time to return to 95% of the baseline counts was significantly longer in ceftriaxone‐treated individuals than in cefotaxime‐treated subjects for two bacterial families: Akkermansiaceae (median [range]: 11.3 days [0; 180.0] vs. 4.2 days [0; 25.6], p = 0.027) and Tannerellaceae (13.7 days [6.1; 180.0] vs. 6.2 days [5.4; 17.3], p = 0.003). Taking bacterial interaction as well as individual antibiotic exposure profile into account improves the analysis of antibiotic‐induced dysbiosis.