A Generic Integrated Physiologically based Whole‐body Model of the Glucose‐Insulin‐Glucagon Regulatory System

CPT: Pharmacometrics and Systems Pharmacology - Tập 2 Số 8 - Trang 1-10 - 2013
Stephan Schaller1,2, Stefan Willmann2, Jörg Lippert2, Julia K. Mader3, Thomas R. Pieber3, Andreas Schuppert1,2, Thomas Eißing2
1Aachen Institute for Advanced Study in Computational Engineering Sciences, RWTH Aachen, Aachen, Germany
2Bayer Technology Services GmbH, Computational Systems Biology Leverkusen Germany
3Department of Internal Medicine, Medical University of Graz, Graz, Austria

Tóm tắt

Models of glucose metabolism are a valuable tool for fundamental and applied medical research in diabetes. Use cases range from pharmaceutical target selection to automatic blood glucose control. Standard compartmental models represent little biological detail, which hampers the integration of multiscale data and confines predictive capabilities. We developed a detailed, generic physiologically based whole‐body model of the glucose‐insulin‐glucagon regulatory system, reflecting detailed physiological properties of healthy populations and type 1 diabetes individuals expressed in the respective parameterizations. The model features a detailed representation of absorption models for oral glucose, subcutaneous insulin and glucagon, and an insulin receptor model relating pharmacokinetic properties to pharmacodynamic effects. Model development and validation is based on literature data. The quality of predictions is high and captures relevant observed inter‐ and intra‐individual variability. In the generic form, the model can be applied to the development and validation of novel diabetes treatment strategies.

CPT: Pharmacometrics & Systems Pharmacology (2013) 2, e65; doi:10.1038/psp.2013.40; published online 14 August 2013

Từ khóa


Tài liệu tham khảo

International‐Diabetes‐Federation, 2011, IDF Diabetes Atlas

10.1016/j.jash.2009.04.001

10.1111/j.1463-1326.2010.01317.x

10.3390/a2010518

10.1038/nrendo.2011.32

10.1152/jappl.1961.16.5.783

10.1152/ajpendo.1979.236.6.E667

10.1016/S0140-6736(09)62165-6

10.1109/TBME.2007.893506

10.1177/193229680900300106

10.1088/0967-3334/29/8/008

10.1111/j.1742-1241.2010.02575.x

Sorensen J.T., 1985, A Physiologic Model of Glucose Metabolism in Man and its Use to Design and Assess Improved Insulin Therapies for Diabetes

10.1109/10.740877

10.3389/fphys.2011.00004

10.1007/s10928-012-9241-9

10.1002/jps.22726

10.1007/BF01059088

10.1109/TBME.2005.857681

10.1152/ajpendo.00431.2004

10.1152/ajpendo.00186.2011

Dalla Man C., 2006, Mixed meal simulation model of glucose‐insulin system, Conf. Proc. IEEE Eng. Med. Biol. Soc., 1, 307

Markakis M.G., 2008, Computational study of an augmented minimal model for glycaemia control, Conf. Proc. IEEE Eng. Med. Biol. Soc., 2008, 5445

10.1016/S1478-5382(03)02342-4

10.1016/S0022-5193(05)80475-8

10.1186/1752-0509-2-43

10.1172/JCI109689

10.1210/er.19.5.608

10.1126/scitranslmed.3000619

10.1152/ajpendo.1999.276.3.E409

10.2337/diabetes.48.5.1070

10.1016/j.jtbi.2010.05.002

10.1177/193229680700100603

10.1023/A:1006883311233

Bottaro D.P., 1989, Insulin receptor recycling in vascular endothelial cells. Regulation by insulin and phorbol ester, J. Biol. Chem., 264, 5916, 10.1016/S0021-9258(18)83637-7

Gorden P., 1989, Biosynthesis and regulation of the insulin receptor, Yale J. Biol. Med., 62, 521

10.1088/0967-3334/25/4/010

10.1101/gad.1340505

10.1006/jtbi.2000.2180

10.1079/PNS2004343

10.1007/s10439-006-9217-2

10.1186/1475-2891-5-22

10.2165/00003088-199936030-00004

10.1177/193229681300700128

10.1056/NEJM198607173150302

10.2337/db11-1478

10.1007/s001250050789

10.1042/bj3360019

10.1098/rsif.2011.0141

Services BT.SB Model Suite 5.1.4 – users manual. (2012).