A Quantitative Systems Pharmacology Kidney Model of Diabetes Associated Renal Hyperfiltration and the Effects of <scp>SGLT</scp> Inhibitors

CPT: Pharmacometrics and Systems Pharmacology - Tập 7 Số 12 - Trang 788-797 - 2018
Pavel Balazki1,2,3, Stephan Schaller3, Thomas Eißing1, Thorsten Lehr2
1Clinical Pharmacometrics, Bayer AG, Leverkusen, Germany
2Clinical Pharmacy, Saarland University, Saarbrücken, Germany
3esqLABS GmbH, Saterland, Germany

Tóm tắt

The early stage of diabetes mellitus is characterized by increased glomerular filtration rate (GFR), known as hyperfiltration, which is believed to be one of the main causes leading to renal injury in diabetes. Sodium‐glucose cotransporter 2 inhibitors (SGLT2i) have been shown to be able to reverse hyperfiltration in some patients. We developed a mechanistic computational model of the kidney that explains the interplay of hyperglycemia and hyperfiltration and integrates the pharmacokinetics/pharmacodynamics (PK/PD) of the SGLT2i dapagliflozin. Based on simulation results, we propose kidney growth as the necessary process for hyperfiltration progression. Further, the model indicates that renal SGLT1i could significantly improve hyperfiltration when added to SGTL2i. Integrated into a physiologically based PK/PD (PBPK/PD) Diabetes Platform, the model presents a powerful tool for aiding drug development, prediction of hyperfiltration risk, and allows the assessment of the outcomes of individualized treatments with SGLT1‐inhibitors and SGLT2‐inhibitors and their co‐administration with insulin.

Từ khóa


Tài liệu tham khảo

10.2337/dc17-S013

10.1038/kisup.2012.77

Vallon V., 1999, Glomerular hyperfiltration in experimental diabetes mellitus potential role of tubular reabsorption, J. Am. Soc. Nephrol., 10, 2569, 10.1681/ASN.V10122569

10.1038/nrneph.2012.19

10.1159/000363721

10.1056/NEJMoa1614329

10.1161/CIRCULATIONAHA.113.005081

10.1097/01.ASN.0000051700.07403.27

Tortora G.J., 2014, Principles of Anatomy and Physiology, 712

10.2337/dcS15-3006

10.1056/NEJMoa1611925

10.1056/NEJMoa1515920

10.2337/db17-0100

10.1016/j.biopha.2017.07.095

10.2337/dc13-0387

10.1016/S2213-8587(13)70050-0

10.1517/14728222.2016.1168808

10.1007/s001250050752

10.1038/psp.2013.40

Open‐Systems‐Pharmacology – Glucose‐Insulin‐Model. <https://github.com/Open-Systems-Pharmacology/Glucose-Insulin-Model>.

Open Systems Pharmacology Suite. <www.open-systems-pharmacology.org>.

R Development Core Team, 2011, R: A Language and Environment for Statistical Computing

10.1002/psp4.12134

10.1007/s10928-017-9559-4

10.1124/dmd.109.029165

10.1111/j.1365-2125.2012.04391.x

10.1038/clpt.2008.251

10.1016/j.clinthera.2011.09.011

10.3389/fphar.2014.00274

10.1007/s40262-013-0104-3

10.1152/ajprenal.00497.2016

10.1111/j.1365-2265.2005.02318.x

10.2215/CJN.10180916

10.1146/annurev-physiol-020911-153333

10.1002/jcp.1041470224

10.1152/ajprenal.2001.280.1.F10

10.1002/path.1711100202

10.1002/ar.1092320205

10.1007/BF00710231

10.3389/fphys.2012.00494

10.1038/ki.1990.95

Pape H.‐C., 2010, Physiologie

10.1152/ajpcell.00328.2011