
Applied Mechanics Reviews
SCOPUS (1965,1969-2011,2013-2024)SCIE-ISI
0003-6900
1088-8535
Mỹ
Cơ quản chủ quản: The American Society of Mechanical Engineers(ASME) , ASME
Các bài báo tiêu biểu
This article describes the governing equations, computational algorithms, and other components entering into the Community Multiscale Air Quality (CMAQ) modeling system. This system has been designed to approach air quality as a whole by including state-of-the-science capabilities for modeling multiple air quality issues, including tropospheric ozone, fine particles, acid deposition, and visibility degradation. CMAQ was also designed to have multiscale capabilities so that separate models were not needed for urban and regional scale air quality modeling. By making CMAQ a modeling system that addresses multiple pollutants and different spatial scales, it has a “one-atmosphere” perspective that combines the efforts of the scientific community. To implement multiscale capabilities in CMAQ, several issues (such as scalable atmospheric dynamics and generalized coordinates), which depend on the desired model resolution, are addressed. A set of governing equations for compressible nonhydrostatic atmospheres is available to better resolve atmospheric dynamics at smaller scales. Because CMAQ is designed to handle scale-dependent meteorological formulations and a large amount of flexibility, its governing equations are expressed in a generalized coordinate system. This approach ensures consistency between CMAQ and the meteorological modeling system. The generalized coordinate system determines the necessary grid and coordinate transformations, and it can accommodate various vertical coordinates and map projections. The CMAQ modeling system simulates various chemical and physical processes that are thought to be important for understanding atmospheric trace gas transformations and distributions. The modeling system contains three types of modeling components (Models-3): a meteorological modeling system for the description of atmospheric states and motions, emission models for man-made and natural emissions that are injected into the atmosphere, and a chemistry-transport modeling system for simulation of the chemical transformation and fate. The chemical transport model includes the following process modules: horizontal advection, vertical advection, mass conservation adjustments for advection processes, horizontal diffusion, vertical diffusion, gas-phase chemical reactions and solvers, photolytic rate computation, aqueous-phase reactions and cloud mixing, aerosol dynamics, size distributions and chemistry, plume chemistry effects, and gas and aerosol deposition velocity estimation. This paper describes the Models-3 CMAQ system, its governing equations, important science algorithms, and a few application examples. This review article cites 114 references.
An overview of the virtual crack closure technique is presented. The approach used is discussed, the history summarized, and insight into its applications provided. Equations for two-dimensional quadrilateral finite elements with linear and quadratic shape functions are given. Formulas for applying the technique in conjunction with three-dimensional solid elements as well as plate/shell elements are also provided. Necessary modifications for the use of the method with geometrically nonlinear finite element analysis and corrections required for elements at the crack tip with different lengths and widths are discussed. The problems associated with cracks or delaminations propagating between different materials are mentioned briefly, as well as a strategy to minimize these problems. Due to an increased interest in using a fracture mechanics–based approach to assess the damage tolerance of composite structures in the design phase and during certification, the engineering problems selected as examples and given as references focus on the application of the technique to components made of composite materials.
The differential quadrature method is a numerical solution technique for initial and/or boundary problems. It was developed by the late Richard Bellman and his associates in the early 70s and, since then, the technique has been successfully employed in a variety of problems in engineering and physical sciences. The method has been projected by its proponents as a potential alternative to the conventional numerical solution techniques such as the finite difference and finite element methods. This paper presents a state-of-the-art review of the differential quadrature method, which should be of general interest to the computational mechanics community.
The subject of this paper is the simulation of one-dimensional, uni-variate, stationary, Gaussian stochastic processes using the spectral representation method. Following this methodology, sample functions of the stochastic process can be generated with great computational efficiency using a cosine series formula. These sample functions accurately reflect the prescribed probabilistic characteristics of the stochastic process when the number N of the terms in the cosine series is large. The ensemble-averaged power spectral density or autocorrelation function approaches the corresponding target function as the sample size increases. In addition, the generated sample functions possess ergodic characteristics in the sense that the temporally-averaged mean value and the autocorrelation function are identical with the corresponding targets, when the averaging takes place over the fundamental period of the cosine series. The most important property of the simulated stochastic process is that it is asymptotically Gaussian as N → ∞. Another attractive feature of the method is that the cosine series formula can be numerically computed efficiently using the Fast Fourier Transform technique. The main area of application of this method is the Monte Carlo solution of stochastic problems in engineering mechanics and structural engineering. Specifically, the method has been applied to problems involving random loading (random vibration theory) and random material and geometric properties (response variability due to system stochasticity).
This paper presents a review of the principal developments in functionally graded materials (FGMs) with an emphasis on the recent work published since 2000. Diverse areas relevant to various aspects of theory and applications of FGM are reflected in this paper. They include homogenization of particulate FGM, heat transfer issues, stress, stability and dynamic analyses, testing, manufacturing and design, applications, and fracture. The critical areas where further research is needed for a successful implementation of FGM in design are outlined in the conclusions.
Soon after the discovery of carbon nanotubes, it was realized that the theoretically predicted mechanical properties of these interesting structures–including high strength, high stiffness, low density and structural perfection–could make them ideal for a wealth of technological applications. The experimental verification, and in some cases refutation, of these predictions, along with a number of computer simulation methods applied to their modeling, has led over the past decade to an improved but by no means complete understanding of the mechanics of carbon nanotubes. We review the theoretical predictions and discuss the experimental techniques that are most often used for the challenging tasks of visualizing and manipulating these tiny structures. We also outline the computational approaches that have been taken, including ab initio quantum mechanical simulations, classical molecular dynamics, and continuum models. The development of multiscale and multiphysics models and simulation tools naturally arises as a result of the link between basic scientific research and engineering application; while this issue is still under intensive study, we present here some of the approaches to this topic. Our concentration throughout is on the exploration of mechanical properties such as Young’s modulus, bending stiffness, buckling criteria, and tensile and compressive strengths. Finally, we discuss several examples of exciting applications that take advantage of these properties, including nanoropes, filled nanotubes, nanoelectromechanical systems, nanosensors, and nanotube-reinforced polymers. This review article cites 349 references.
This paper gives a historical review of the theories that have been developed for the analysis of multilayered structures. Attention has been restricted to the so-called Zig-Zag theories, which describe a piecewise continuous displacement field in the plate thickness direction and fulfill interlaminar continuity of transverse stresses at each layer interface. Basically, plate and shell geometries are addressed, even though beams are also considered in some cases. Models in which the number of displacement variables is kept independent of the number of constitutive layers are discussed to the greatest extent. Attention has been restricted to those plate and shell theories which are based on the so-called method of hypotheses or axiomatic approach in which assumptions are introduced for displacements and/or transverse stresses. Mostly, the work published in the English language is reviewed. However, an account of a few articles originally written in Russian is also given. The historical review conducted has led to the following main conclusions. 1) Lekhnitskii (1935) was the first to propose a Zig-Zag theory, which was obtained by solving an elasticity problem involving a layered beam. 2) Two other different and independent Zig-Zag theories have been singled out. One was developed by Ambartsumian (1958), who extended the well-known Reissner-Mindlin theory to layered, anisotropic plates and shells; the other approach was introduced by Reissner (1984), who proposed a variational theorem that permits both displacements and transverse stress assumptions. 3) On the basis of historical considerations, which are detailed in the paper, it is proposed to refer to these three theories by using the following three names: Lekhnitskii Multilayered Theory, (LMT), Ambartsumian Multilayered Theory (AMT), and Reissner Multilayered Theory (RMT). As far as subsequent contributions to these three theories are concerned, it can be remarked that: 4) LMT although very promising, has almost been ignored in the open literature. 5) Dozens of papers have instead been presented which consist of direct applications or particular cases of the original AMT. The contents of the original works have very often been ignored, not recognized, or not mentioned in the large number of articles that were published in journals written in the English language. Such historical unfairness is detailed in Section 3.2. 6) RMT seems to be the most natural and powerful method to analyze multilayered structures. Compared to other theories, the RMT approach has allowed from the beginning development of models which retain the fundamental effect related to transverse normal stresses and strains. This review article cites 138 references.
It is of great importance for the development of new products to find the best possible topology or layout for given design objectives and constraints at a very early stage of the design process (the conceptual and project definition phase). Thus, over the last decade, substantial efforts of fundamental research have been devoted to the development of efficient and reliable procedures for solution of such problems. During this period, the researchers have been mainly occupied with two different kinds of topology design processes; the Material or Microstructure Technique and the Geometrical or Macrostructure Technique. It is the objective of this review paper to present an overview of the developments within these two types of techniques with special emphasis on optimum topology and layout design of linearly elastic 2D and 3D continuum structures. Starting from the mathematical-physical concepts of topology and layout optimization, several methods are presented and the applicability is illustrated by a number of examples. New areas of application of topology optimization are discussed at the end of the article. This review article includes 425 references.
Laminated composite materials are used extensively in aerospace and other applications. With their high specific modulus, high specific strength, and the capability of being tailored for a specific application, these materials offer definite advantages compared to more traditional materials. However, their behavior under impact is a concern, since impacts do occur during manufacture, normal operations, or maintenance. The situation is critical for impacts which induce significant internal damage, undetectable by visual inspection, that cause large drops in the strength and stability of the structure. Impact dynamics, including the motion of both the impactor and the target and the force developed at the interface, can be predicted accurately using a number of models. The state of stress in the vicinity of the impact is very complex and requires detailed analyses. Accurate criteria for predicting initial failure are generally not available, and analyses after initial failure are questionable. For these reasons, it can be said that a general method for estimating the type and size of impact damage is not available at this time. However, a large amount of experimental data has been published, and several important features of impact damage have been identified. In particular, interply delaminations are known to occur at the interface between plies with different fiber orientation. Their shape is generally elongated in the direction of the fibers in the lower ply at that interface. The delaminated area is known to increase linearly with the kinetic energy of the impactor after a certain threshold value has been reached. The effect of impact damage on the properties of the laminate has obvious implications for design and inspection of actual structures. Experimental results concerning the residual strength of impact damaged specimens subjected to tension, compression, shear, bending, and both static and fatigue loading are available. Analyses concentrate primarily on predicting residual tensile and compressive strength. In order to fully understand the effect of foreign object impact damage, one should understand impact dynamics and be able to predict the location, type, and size of the damage induced and the residual properties of the laminate. This article is organized along these lines and presents a comprehensive review of the literature on impact of laminated composites, considering both experimental and analytical approaches.