miR-31 and its host gene lncRNA LOC554202 are regulated by promoter hypermethylation in triple-negative breast cancer

Molecular Cancer - Tập 11 - Trang 1-13 - 2012
Katarzyna Augoff1, Brian McCue1, Edward F Plow1, Khalid Sossey-Alaoui1,2
1Department of Molecular Cardiology, Lerner Research Institute Cleveland Clinic, Cleveland, USA
2Department of Molecular Cardiology, Cleveland Clinic Lerner Research Institute, Cleveland, USA

Tóm tắt

microRNAs have been established as powerful regulators of gene expression in normal physiological as well as in pathological conditions, including cancer progression and metastasis. Recent studies have demonstrated a key role of miR-31 in the progression and metastasis of breast cancer. Downregulation of miR-31 enhances several steps of the invasion-metastasis cascade in breast cancer, i.e., local invasion, extravasation and survival in the circulation system, and metastatic colonization of distant sites. miR-31 exerts its metastasis-suppressor activity by targeting a cohort of pro-metastatic genes, including RhoA and WAVE3. The molecular mechanisms that lead to the loss of miR-31 and the activation of its pro-metastatic target genes during these specific steps of the invasion-metastasis cascade are however unknown. In the present report, we identify promoter hypermethylation as one of the major mechanisms for silencing miR-31 in breast cancer, and in the triple-negative breast cancer (TNBC) cell lines of basal subtype, in particular. miR-31 maps to the intronic sequence of a novel long non-coding (lnc)RNA, LOC554202 and the regulation of its transcriptional activity is under control of LOC554202. Both miR-31 and the host gene LOC554202 are down-regulated in the TNBC cell lines of basal subtype and over-expressed in the luminal counterparts. Treatment of the TNBC cell lines with either a de-methylating agent alone or in combination with a de-acetylating agent resulted in a significant increase of both miR-31 and its host gene, suggesting an epigenetic mechanism for the silencing of these two genes by promoter hypermethylation. Finally, both methylation-specific PCR and sequencing of bisulfite-converted DNA demonstrated that the LOC554202 promoter-associated CpG island is heavily methylated in the TNBC cell lines and hypomethylated in the luminal subtypes. Loss of miR-31 expression in TNBC cell lines is attributed to hypermethylation of its promoter-associated CpG island. Together, our results provide the initial evidence for a mechanism by which miR-31, an important determinant of the invasion metastasis cascade, is regulated in breast cancer.

Tài liệu tham khảo

Chiang AC, Massague J: Molecular basis of metastasis. N Engl J Med. 2008, 359: 2814-2823. 10.1056/NEJMra0805239

Nguyen DX, Bos PD, Massague J: Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer. 2009, 9: 274-284. 10.1038/nrc2622

Talmadge JE, Fidler IJ: AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Res. 2010, 70: 5649-5669. 10.1158/0008-5472.CAN-10-1040

Li F, Tiede B, Massague J, Kang Y: Beyond tumorigenesis: cancer stem cells in metastasis. Cell Res. 2007, 17: 3-14. 10.1038/sj.cr.7310118

Jemal A, Siegel R, Xu J, Ward E: Cancer statistics, 2010. CA Cancer J Clin. 2010, 60: 277-300. 10.3322/caac.20073

Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA: Molecular portraits of human breast tumours. Nature. 2000, 406: 747-752. 10.1038/35021093

Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H: Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA. 2001, 98: 10869-10874. 10.1073/pnas.191367098

Carey L, Winer E, Viale G, Cameron D, Gianni L: Triple-negative breast cancer: disease entity or title of convenience?. Nat Rev Clin Oncol. 2010, 7: 683-692. 10.1038/nrclinonc.2010.154

Finnegan TJ, Carey LA: Gene-expression analysis and the basal-like breast cancer subtype. Future Oncol. 2007, 3: 55-63. 10.2217/14796694.3.1.55

Foulkes WD, Smith IE, Reis-Filho JS: Triple-negative breast cancer. N Engl J Med. 2010, 363: 1938-1948. 10.1056/NEJMra1001389

Jiang Z, Jones R, Liu JC, Deng T, Robinson T, Chung PE: RB1 and p53 at the crossroad of EMT and triple negative breast cancer. Cell Cycle. 2011, 10: 1563-1570. 10.4161/cc.10.10.15703

Schneider BP, Winer EP, Foulkes WD, Garber J, Perou CM, Richardson A: Triple-negative breast cancer: risk factors to potential targets. Clin Cancer Res. 2008, 14: 8010-8018. 10.1158/1078-0432.CCR-08-1208

Padua D, Massague J: Roles of TGFbeta in metastasis. Cell Res. 2009, 19: 89-102. 10.1038/cr.2008.316

Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S: A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep. 2008, 9: 582-589. 10.1038/embor.2008.74

Esquela-Kerscher A, Slack FJ: Oncomirs-microRNAs with a role in cancer. Nat Rev Cancer. 2006, 6: 259-269. 10.1038/nrc1840

Sossey-Alaoui K, Downs-Kelly E, Das M, Izem L, Tubbs R, Plow EF: WAVE3, an actin remodeling protein, is regulated by the metastasis suppressor microRNA, miR-31, during the invasion-metastasis cascade. Int J Cancer. 2011, 129 (6): 1331-1343. 10.1002/ijc.25793

Sossey-Alaoui K, Bialkowska K, Plow EF: The miR200 family of microRNAs regulates WAVE3-dependent cancer cell invasion. J Biol Chem. 2009, 284: 33019-33029. 10.1074/jbc.M109.034553

Akao Y, Nakagawa Y, Naoe T: let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biol Pharm Bull. 2006, 29: 903-906. 10.1248/bpb.29.903

Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E: Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 2002, 99: 15524-15529. 10.1073/pnas.242606799

Johnson CD, Esquela-Kerscher A, Stefani G, Byrom M, Kelnar K, Ovcharenko D: The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res. 2007, 67: 7713-7722. 10.1158/0008-5472.CAN-07-1083

Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H: Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res. 2004, 64: 3753-3756. 10.1158/0008-5472.CAN-04-0637

He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S: A microRNA polycistron as a potential human oncogene. Nature. 2005, 435: 828-833. 10.1038/nature03552

Valastyan S, Weinberg RA: miR-31: A crucial overseer of tumor metastasis and other emerging roles. Cell Cycle. 2010, 9: 2124-2129. 10.4161/cc.9.11.11843

Valastyan S, Chang A, Benaich N, Reinhardt F, Weinberg RA: Activation of miR-31 function in already-established metastases elicits metastatic regression. Genes Dev. 2011, 25: 646-659. 10.1101/gad.2004211

Valastyan S, Benaich N, Chang A, Reinhardt F, Weinberg RA: Concomitant suppression of three target genes can explain the impact of a microRNA on metastasis. Genes Dev. 2009, 23: 2592-2597. 10.1101/gad.1832709

Sossey-Alaoui K, Safina A, Li X, Vaughan MM, Hicks DG, Bakin AV: Down-Regulation of WAVE3, a Metastasis Promoter Gene, Inhibits Invasion and Metastasis of Breast Cancer Cells. Am J Pathol. 2007, 170 (6): 2112-2121. 10.2353/ajpath.2007.060975

Fernando HS, Davies SR, Chhabra A, Watkins G, Douglas-Jones A, Kynaston H: Expression of the WASP verprolin-homologues (WAVE members) in human breast cancer. Oncology. 2007, 73: 376-383. 10.1159/000136157

Wang W, Goswami S, Lapidus K, Wells AL, Wyckoff JB, Sahai E: Identification and testing of a gene expression signature of invasive carcinoma cells within primary mammary tumors. Cancer Res. 2004, 64: 8585-8594. 10.1158/0008-5472.CAN-04-1136

Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R: Complete sequencing and characterization of 21, 243 full-length human cDNAs. Nat Genet. 2004, 36: 40-45. 10.1038/ng1285

Strausberg RL, Feingold EA, Grouse LH, Derge JG, Klausner RD, Collins FS: Generation and initial analysis of more than 15, 000 full-length human and mouse cDNA sequences. Proc Natl Acad Sci USA. 2002, 99: 16899-16903. 10.1073/pnas.242603899

Andorfer CA, Necela BM, Thompson EA, Perez EA: MicroRNA signatures: clinical biomarkers for the diagnosis and treatment of breast cancer. Trends Mol Med. 2011, 17: 313-319. 10.1016/j.molmed.2011.01.006

Weigel MT, Dowsett M: Current and emerging biomarkers in breast cancer: prognosis and prediction. Endocr Relat Cancer. 2010, 17: R245-R262. 10.1677/ERC-10-0136

Augoff K, Das M, Bialkowska K, McCue B, Plow EF, Sossey-Alaoui K: miR-31 is a broad regulator of β1-integrin expression and function in cancer cells. Mol Cancer Res. 2011, 9 (11): 1500-1508. 10.1158/1541-7786.MCR-11-0311

Sossey-Alaoui K, Kitamura E, Head K, Cowell JK: Characterization of FAM10A4, a member of the ST13 tumor suppressor gene family that maps to the 13q14.3 region associated with B-Cell leukemia, multiple myeloma, and prostate cancer. Genomics. 2002, 80: 5-7. 10.1006/geno.2002.6792

Sossey-Alaoui K, Ranalli TA, Li X, Bakin AV, Cowell JK: WAVE3 promotes cell motility and invasion through the regulation of MMP-1, MMP-3, and MMP-9 expression. Exp Cell Res. 2005, 308: 135-145. 10.1016/j.yexcr.2005.04.011

Sossey-Alaoui K, Li X, Cowell JK: c-Abl-mediated phosphorylation of WAVE3 is required for lamellipodia formation and cell migration. J Biol Chem. 2007, 282: 26257-26265. 10.1074/jbc.M701484200