iMATCH: an integrated modular assembly system for therapeutic combination high-capacity adenovirus gene therapy

Molecular Therapy - Methods & Clinical Development - Tập 20 - Trang 572-586 - 2021
Dominik Brücher1, Nicole Kirchhammer2, Sheena N. Smith1, Jatina Schumacher1, Nina Schumacher1, Jonas Kolibius1, Patrick C. Freitag1, Markus Schmid1, Fabian Weiss1,3, Corina Keller1, Melanie Grove4, Urs F. Greber4, Alfred Zippelius2,5, Andreas Plückthun1
1Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
2Department of Biomedicine, University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
3Institute of Pharmacology, University of Bern, Inselspital, INO-F, 3010, Bern, Switzerland
4Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
5Medical Oncology, University Hospital Basel, 4031 Basel, Switzerland

Tài liệu tham khảo

Sedighi, 2019, Therapeutic bacteria to combat cancer; current advances, challenges, and opportunities, Cancer Med., 8, 3167, 10.1002/cam4.2148

De Luca, 2019, Advances in stem cell research and therapeutic development, Nat. Cell Biol., 21, 801, 10.1038/s41556-019-0344-z

Baker, 2018, Designer oncolytic adenovirus: coming of age, Cancers (Basel), 10, 201, 10.3390/cancers10060201

Gao, 2019, State-of-the-art human adenovirus vectorology for therapeutic approaches, FEBS Lett., 593, 3609, 10.1002/1873-3468.13691

Lundstrom, 2018, Viral vectors in gene therapy, Diseases, 6, 42, 10.3390/diseases6020042

Greber, 2019, Adenovirus entry: from infection to immunity, Annu. Rev. Virol., 6, 177, 10.1146/annurev-virology-092818-015550

Greber, 2020, Adenoviruses–infection, pathogenesis and therapy, FEBS Lett., 594, 1818, 10.1002/1873-3468.13849

Ura, 2014, Developments in viral vector-based vaccines, Vaccines (Basel), 2, 624, 10.3390/vaccines2030624

Björklund, 2018, Repairing the brain: gene therapy, J. Parkinsons Dis., 8, S123, 10.3233/JPD-181485

Gordon, 2019, Gene therapies in ophthalmic disease, Nat. Rev. Drug Discov., 18, 415, 10.1038/d41573-018-00016-1

Wirth, 2014, Gene therapy used in cancer treatment, Biomedicines, 2, 149, 10.3390/biomedicines2020149

Ehrke-Schulz, 2017, CRISPR/Cas9 delivery with one single adenoviral vector devoid of all viral genes, Sci. Rep., 7, 17113, 10.1038/s41598-017-17180-w

Palmer, 2020, A single “all-in-one” helper-dependent adenovirus to deliver donor DNA and CRISPR/Cas9 for efficient homology-directed repair, Mol. Ther. Methods Clin. Dev., 17, 441, 10.1016/j.omtm.2020.01.014

Hubberstey, 2002, Cancer therapy utilizing an adenoviral vector expressing only E1A, Cancer Gene Ther., 9, 321, 10.1038/sj.cgt.7700436

Neshat, 2020, Gene delivery for immunoengineering, Curr. Opin. Biotechnol., 66, 1, 10.1016/j.copbio.2020.05.008

Sharma, 2020, Dissecting the mechanisms of immune checkpoint therapy, Nat. Rev. Immunol., 20, 75, 10.1038/s41577-020-0275-8

Ansell, 2015, PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma, N. Engl. J. Med., 372, 311, 10.1056/NEJMoa1411087

Topalian, 2012, Safety, activity, and immune correlates of anti-PD-1 antibody in cancer, N. Engl. J. Med., 366, 2443, 10.1056/NEJMoa1200690

Garon, 2015, Pembrolizumab for the treatment of non-small-cell lung cancer, N. Engl. J. Med., 372, 2018, 10.1056/NEJMoa1501824

Haslam, 2019, Estimation of the percentage of US patients with cancer who are eligible for and respond to checkpoint inhibitor immunotherapy drugs, JAMA Netw. Open, 2, e192535, 10.1001/jamanetworkopen.2019.2535

Galluzzi, 2018, The hallmarks of successful anticancer immunotherapy, Sci. Transl. Med., 10, 459, 10.1126/scitranslmed.aat7807

Garris, 2018, Successful anti-PD-1 cancer immunotherapy requires T cell-dendritic cell crosstalk involving the cytokines IFN-γ and IL-12, Immunity, 49, 1148, 10.1016/j.immuni.2018.09.024

Chan, 2020, Autoimmune complications of immunotherapy: pathophysiology and management, BMJ, 369, m736, 10.1136/bmj.m736

Huang, 2020, Highly efficient and tumor-selective nanoparticles for dual-targeted immunogene therapy against cancer, Sci. Adv., 6, eaax5032, 10.1126/sciadv.aax5032

Porter, 2020, Oncolytic adenovirus armed with BiTE, cytokine, and checkpoint inhibitor enables CAR T cells to control the growth of heterogeneous tumors, Mol. Ther., 28, 1251, 10.1016/j.ymthe.2020.02.016

Nakao, 2020, Intratumoral expression of IL-7 and IL-12 using an oncolytic virus increases systemic sensitivity to immune checkpoint blockade, Sci. Transl. Med., 12, 526, 10.1126/scitranslmed.aax7992

Brunetti-Pierri, 2013, Transgene expression up to 7 years in nonhuman primates following hepatic transduction with helper-dependent adenoviral vectors, Hum. Gene Ther., 24, 761, 10.1089/hum.2013.071

Muruve, 2004, Helper-dependent adenovirus vectors elicit intact innate but attenuated adaptive host immune responses in vivo, J. Virol., 78, 5966, 10.1128/JVI.78.11.5966-5972.2004

Lee, 2019, No more helper adenovirus: production of gutless adenovirus (GLAd) free of adenovirus and replication-competent adenovirus (RCA) contaminants, Exp. Mol. Med., 51, 1, 10.1038/s12276-019-0299-y

Jager, 2009, A rapid protocol for construction and production of high-capacity adenoviral vectors, Nat. Protoc., 4, 547, 10.1038/nprot.2009.4

Dormond, 2011, Manufacturing of adenovirus vectors: production and purification of helper dependent adenovirus, Methods Mol. Biol., 737, 139, 10.1007/978-1-61779-095-9_6

Zhou, 2002, Production of helper-dependent adenovirus vector relies on helper virus structure and complementing, J. Gene Med., 4, 498, 10.1002/jgm.301

Sandig, 2000, Optimization of the helper-dependent adenovirus system for production and potency in vivo, Proc. Natl. Acad. Sci. USA, 97, 1002, 10.1073/pnas.97.3.1002

Palmer, 2003, Improved system for helper-dependent adenoviral vector production, Mol. Ther., 8, 846, 10.1016/j.ymthe.2003.08.014

Barry, 2020, Retargeting adenoviruses for therapeutic applications and vaccines, FEBS Lett., 594, 1918, 10.1002/1873-3468.13731

Dreier, 2013, Development of a generic adenovirus delivery system based on structure-guided design of bispecific trimeric DARPin adapters, Proc. Natl. Acad. Sci. USA, 110, E869, 10.1073/pnas.1213653110

Poulin, 2020, Fusion of large polypeptides to human adenovirus type 5 capsid protein IX can compromise virion stability and DNA packaging capacity, J. Virol., 94, e01112, 10.1128/JVI.01112-20

Dreier, 2012, Rapid selection of high-affinity binders using ribosome display, Methods Mol. Biol., 805, 261, 10.1007/978-1-61779-379-0_15

Xu, 2013, Coagulation factor X shields adenovirus type 5 from attack by natural antibodies and complement, Nat. Med., 19, 452, 10.1038/nm.3107

Allen, 2019, Interaction of adenovirus with antibodies, complement, and coagulation factors, FEBS Lett., 593, 3449, 10.1002/1873-3468.13649

Schmid, 2018, Adenoviral vector with shield and adapter increases tumor specificity and escapes liver and immune control, Nat. Commun., 9, 450, 10.1038/s41467-017-02707-6

Qin, 2010, Systematic comparison of constitutive promoters and the doxycycline-inducible promoter, PLoS ONE, 5, e10611, 10.1371/journal.pone.0010611

Chng, 2015, Cleavage efficient 2A peptides for high level monoclonal antibody expression in CHO cells, MAbs, 7, 403, 10.1080/19420862.2015.1008351

Renaud-Gabardos, 2015, Internal ribosome entry site-based vectors for combined gene therapy, World J. Exp. Med., 5, 11, 10.5493/wjem.v5.i1.11

Shayakhmetov, 2005, Deletion of penton RGD motifs affects the efficiency of both the internalization and the endosome escape of viral particles containing adenovirus serotype 5 or 35 fiber knobs, J. Virol., 79, 1053, 10.1128/JVI.79.2.1053-1061.2005

Rafei-Shamsabadi, 2019, Successful combination therapy of systemic checkpoint inhibitors and intralesional interleukin-2 in patients with metastatic melanoma with primary therapeutic resistance to checkpoint inhibitors alone, Cancer Immunol. Immunother., 68, 1417, 10.1007/s00262-019-02377-x

Brunetti-Pierri, 2004, Acute toxicity after high-dose systemic injection of helper-dependent adenoviral vectors into nonhuman primates, Hum. Gene Ther., 15, 35, 10.1089/10430340460732445

Wold, 2013, Adenovirus vectors for gene therapy, vaccination and cancer gene therapy, Curr. Gene Ther., 13, 421, 10.2174/1566523213666131125095046

Goswami, 2019, Gene therapy leaves a vicious cycle, Front. Oncol., 9, 297, 10.3389/fonc.2019.00297

Smith, 2009, DNA genome size affects the stability of the adenovirus virion, J. Virol., 83, 2025, 10.1128/JVI.01644-08

Parks, 1996, A helper-dependent adenovirus vector system: removal of helper virus by Cre-mediated excision of the viral packaging signal, Proc. Natl. Acad. Sci. USA, 93, 13565, 10.1073/pnas.93.24.13565

Fausther-Bovendo, 2014, Pre-existing immunity against Ad vectors: humoral, cellular, and innate response, what’s important?, Hum. Vaccin. Immunother., 10, 2875, 10.4161/hv.29594

Wang, 2012, Effective antibody therapy induces host-protective antitumor immunity that is augmented by TLR4 agonist treatment, Cancer Immunol. Immunother., 61, 49, 10.1007/s00262-011-1090-7

Giudicelli, 2006, IMGT/LIGM-DB, the IMGT comprehensive database of immunoglobulin and T cell receptor nucleotide sequences, Nucleic Acids Res., 34, D781, 10.1093/nar/gkj088

Lo, 2017, Effector-attenuating substitutions that maintain antibody stability and reduce toxicity in mice, J. Biol. Chem., 292, 3900, 10.1074/jbc.M116.767749

Haryadi, 2015, Optimization of heavy chain and light chain signal peptides for high level expression of therapeutic antibodies in CHO cells, PLoS ONE, 10, e0116878, 10.1371/journal.pone.0116878

Fang, 2005, Stable antibody expression at therapeutic levels using the 2A peptide, Nat. Biotechnol., 23, 584, 10.1038/nbt1087

Fang, 2007, An antibody delivery system for regulated expression of therapeutic levels of monoclonal antibodies in vivo, Mol. Ther., 15, 1153, 10.1038/sj.mt.6300142

Brücher, 2020, Malignant tissues produce divergent antibody glycosylation of relevance for cancer gene therapy effectiveness, MAbs, 12, 1792084, 10.1080/19420862.2020.1792084