A protocol for rapid generation of recombinant adenoviruses using the AdEasy system

Nature Protocols - Tập 2 Số 5 - Trang 1236-1247 - 2007
Jinyong Luo1, Zhong-Liang Deng2, Xiaoji Luo1, Ni Tang1, Wen-Xin Song2, Jin Chen1, Katie A. Sharff2, Hue H. Luu2, Rex C. Haydon2, Kenneth W. Kinzler3, Bert Vogelstein3, Tong‐Chuan He2
1Key Laboratory of Diagnostic Medicine designated by the Ministry of Education, Chongqing Medical University, Chongqing, 400046, China
2Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, 60637, Illinois, USA
3Ludwig Center for Cancer Genetics and Therapeutics and Howard Hughes Medical Institute, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, 21231, Maryland, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Graham, F.L. & Prevec, L. Adenovirus-based expression vectors and recombinant vaccines. Biotechnology 20, 363–390 (1992).

Miller, A.D. Human gene therapy comes of age. Nature 357, 455–460 (1992).

Morgan, R.A. & Anderson, W.F. Human gene therapy. Annu. Rev. Biochem. 62, 191–217 (1993).

Breyer, B. et al. Adenoviral vector-mediated gene transfer for human gene therapy. Curr. Gene Ther. 1, 149–162 (2001).

Nadeau, I. & Kamen, A. Production of adenovirus vector for gene therapy. Biotechnol. Adv. 20, 475–489 (2003).

McConnell, M.J. & Imperiale, M.J. Biology of adenovirus and its use as a vector for gene therapy. Hum. Gene Ther. 15, 1022–1033 (2004).

He, T.-C. In Adenoviral Vectors in Current Protocols in Human Genetics Unit 12.4 12.4.1–12.4.21 (John Wiley & Sons, Inc., New York, 2001).

Shenk, T. Adenoviridae: The viruses and their replication . In Fields Virology. Vol. 2 (eds Fields, B.N. et al.) 2111–2148 (Lippincott-Raven, Philadelphia, 1996).

Graham, F.L., Smiley, J., Russell, W.C. & Nairn, R. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J. Gen. Virol. 36, 59–74 (1977).

Bett, A.J., Prevec, L. & Graham, F.L. Packaging capacity and stability of human adenovirus type 5 vectors. J. Virol. 67, 5911–5921 (1993).

Kochanek, S. et al. A new adenoviral vector: replacement of all viral coding sequences with 28 kb of DNA independently expressing both full-length dystrophin and beta-galactosidase. Proc. Natl. Acad. Sci. USA 93, 5731–5736 (1996).

Lieber, A., He, C.Y., Kirillova, I. & Kay, M.A. Recombinant adenoviruses with large deletions generated by Cre-mediated excision exhibit different biological properties compared with first-generation vectors in vitro and in vivo . J. Virol. 70, 8944–8960 (1996).

Graham, F.L. & Prevec, L. Methods for construction of adenovirus vectors. Mol. Biotechnol. 3, 207–220 (1995).

Ketner, G., Spencer, F., Tugendreich, S., Connelly, C. & Hieter, P. Efficient manipulation of the human adenovirus genome as an infectious yeast artificial chromosome clone. Proc. Natl. Acad. Sci. USA 91, 6186–6190 (1994).

Imler, J.L. et al. An efficient procedure to select and recover recombinant adenovirus vectors. Gene Ther. 2, 263–268 (1995).

Chartier, C. et al. Efficient generation of recombinant adenovirus vectors by homologous recombination in Escherichia coli . J. Virol. 70, 4805–4810 (1996).

Fisher, K.J., Choi, H., Burda, J., Chen, S.J. & Wilson, J.M. Recombinant adenovirus deleted of all viral genes for gene therapy of cystic fibrosis. Virology 217, 11–22 (1996).

Parks, R.J. et al. A helper-dependent adenovirus vector system: removal of helper virus by Cre-mediated excision of the viral packaging signal. Proc. Natl. Acad. Sci. USA 93, 13565–13570 (1996).

Miyake, S. et al. Efficient generation of recombinant adenoviruses using adenovirus DNA-terminal protein complex and a cosmid bearing the full-length virus genome. Proc. Natl. Acad. Sci. USA 93, 1320–1324 (1996).

He, T.C. et al. A simplified system for generating recombinant adenoviruses. Proc. Natl. Acad. Sci. USA 95, 2509–2514 (1998).

Hanahan, D. & Gluzman, Y. Rescue of functional replication origins from embedded configurations in a plasmid carrying the adenovirus genome. Mol. Cell. Biol. 4, 302–309 (1984).

Zeng, M. et al. AdEasy system made easier by selecting the viral backbone plasmid preceding homologous recombination. Biotechniques 31, 260–262 (2001).

Cheng, H. et al. Osteogenic activity of the fourteen types of human bone morphogenetic proteins (BMPs). J. Bone Joint Surg. Am. 85, 1544–1552 (2003).

Kang, Q. et al. Characterization of the distinct orthotopic bone-forming activity of 14 BMPs using recombinant adenovirus-mediated gene delivery. Gene Ther. 11, 1312–1320 (2004).

Luo, Q. et al. Connective tissue growth factor (CTGF) is regulated by Wnt and bone morphogenetic proteins signaling in osteoblast differentiation of mesenchymal stem cells. J. Biol. Chem. 279, 55958–55968 (2004).

Peng, Y. et al. Inhibitor of DNA binding/differentiation helix-loop-helix proteins mediate bone morphogenetic protein-induced osteoblast differentiation of mesenchymal stem cells. J. Biol. Chem. 279, 32941–32949 (2004).

Si, W. et al. CCN1/Cyr61 is regulated by the canonical Wnt signal and plays an important role in Wnt3A-induced osteoblast differentiation of mesenchymal stem cells. Mol. Cell. Biol. 26, 2955–2964 (2006).