Video-rate dual-modal photoacoustic and fluorescence imaging through a multimode fibre towards forward-viewing endomicroscopy
Tài liệu tham khảo
Gora, 2017, Endoscopic optical coherence tomography: technologies and clinical applications, Biomed. Opt. Express, 8, 2405, 10.1364/BOE.8.002405
Tsai, 2017, Optical coherence tomography in gastroenterology: a review and future outlook, J. Biomed. Opt., 22, 10.1117/1.JBO.22.12.121716
Mavadia, 2012, An all-fiber-optic endoscopy platform for simultaneous OCT and fluorescence imaging, Biomed. Opt. Express, 3, 2851, 10.1364/BOE.3.002851
Delaney, 1994, Fiber-optic laser scanning confocal microscope suitable for fluorescence imaging, Appl. Opt., 33, 573, 10.1364/AO.33.000573
Gmitro, 1993, Confocal microscopy through a fiber-optic imaging bundle, Opt. Lett., 18, 565, 10.1364/OL.18.000565
Jansen, 2011, Intravascular photoacoustic imaging of human coronary atherosclerosis, Opt. Lett., 36, 597, 10.1364/OL.36.000597
Yang, 2012, Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo, Nat. Med., 18, 1297, 10.1038/nm.2823
Zhao, 2018, Optical ultrasound generation and detection for intravascular imaging: a review, J. Healthcare Eng., 2018, 10.1155/2018/3182483
Joseph, 2017, Evaluation of precision in optoacoustic tomography for preclinical imaging in living subjects, J. Nuclear Med., 58, 807, 10.2967/jnumed.116.182311
Zhou, 2020, Photoacoustic imaging with fiber optic technology: A review, Photoacoustics, 10.1016/j.pacs.2020.100211
Ntziachristos, 2010, Molecular imaging by means of multispectral optoacoustic tomography (MSOT), Chem. Rev., 110, 2783, 10.1021/cr9002566
Mallidi, 2011, Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance, Trends Biotechnol., 29, 213, 10.1016/j.tibtech.2011.01.006
Wu, 2017, Real-time volumetric lipid imaging in vivo by intravascular photoacoustics at 20 frames per second, Biomed. Opt. Express, 8, 943, 10.1364/BOE.8.000943
Hui, 2017, Real-time intravascular photoacoustic-ultrasound imaging of lipid-laden plaque in human coronary artery at 16 frames per second, Sci. Rep., 7, 1, 10.1038/s41598-017-01649-9
Hajireza, 2011, Label-free in vivo fiber-based optical-resolution photoacoustic microscopy, Opt. Lett., 36, 4107, 10.1364/OL.36.004107
Hajireza, 2013, Label-free in vivo GRIN-lens optical resolution photoacoustic micro-endoscopy, Laser Phys. Lett., 10, 10.1088/1612-2011/10/5/055603
Ansari, 2018, All-optical forward-viewing photoacoustic probe for high-resolution 3D endoscopy, Light: Sci. Appl., 7, 1, 10.1038/s41377-018-0070-5
Xia, 2015, Performance characteristics of an interventional multispectral photoacoustic imaging system for guiding minimally invasive procedures, J. Biomed. Opt., 20, 10.1117/1.JBO.20.8.086005
Ansari, 2020, Miniature all-optical flexible forward-viewing photoacoustic endoscopy probe for surgical guidance, Opt. Lett., 45, 6238, 10.1364/OL.400295
Turtaev, 2018, High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging, Light: Sci. Appl., 7, 1, 10.1038/s41377-018-0094-x
Choi, 2012, Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber, Phys. Rev. Lett., 109, 10.1103/PhysRevLett.109.203901
Loterie, 2015, Digital confocal microscopy through a multimode fiber, Opt. Express, 23, 23845, 10.1364/OE.23.023845
Vasquez-Lopez, 2018, Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber, Light: Sci. Appl., 7, 1, 10.1038/s41377-018-0111-0
Caravaca-Aguirre, 2017, Single multimode fiber endoscope, Opt. Express, 25, 1656, 10.1364/OE.25.001656
Ohayon, 2018, Minimally invasive multimode optical fiber microendoscope for deep brain fluorescence imaging, Biomed. Opt. Express, 9, 1492, 10.1364/BOE.9.001492
Papadopoulos, 2013, High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber, Biomed. Opt. Express, 4, 260, 10.1364/BOE.4.000260
Morales-Delgado, 2015, Two-photon imaging through a multimode fiber, Opt. Express, 23, 32158, 10.1364/OE.23.032158
Papadopoulos, 2013, Optical-resolution photoacoustic microscopy by use of a multimode fiber, Appl. Phys. Lett., 102, 10.1063/1.4807621
Gusachenko, 2017, Raman imaging through a single multimode fibre, Opt. Express, 25, 13782, 10.1364/OE.25.013782
Andresen, 2016, Ultrathin endoscopes based on multicore fibers and adaptive optics: a status review and perspectives, J. Biomed. Opt., 21, 10.1117/1.JBO.21.12.121506
Čižmár, 2011, Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics, Opt. Express, 19, 18871, 10.1364/OE.19.018871
Stasio, 2015, Towards new applications using capillary waveguides, Biomed. Opt. Express, 6, 4619, 10.1364/BOE.6.004619
Mezil, 2020, Single-shot hybrid photoacoustic-fluorescent microendoscopy through a multimode fiber with wavefront shaping, Biomed. Opt. Express, 11, 5717, 10.1364/BOE.400686
Zhao, 2020, Seeing through multimode fibers with real-valued intensity transmission matrices, Opt. Express, 28, 20978, 10.1364/OE.396734
Zhao, 2021, High-speed photoacoustic-guided wavefront shaping for focusing light in scattering media, Opt. Lett., 46, 1165, 10.1364/OL.412572
Wang, 2014, Photoacoustic microscopy and computed tomography: from bench to bedside, Annu. Rev. Biomed. Eng., 16, 155, 10.1146/annurev-bioeng-071813-104553
Dong, 2015, Isometric multimodal photoacoustic microscopy based on optically transparent micro-ring ultrasonic detection, Optica, 2, 169, 10.1364/OPTICA.2.000169
Yu, 2017, Ultrahigh enhancement of light focusing through disordered media controlled by mega-pixel modes, Opt. Express, 25, 8036, 10.1364/OE.25.008036
Plöschner, 2015, Seeing through chaos in multimode fibres, Nature Photonics, 9, 529, 10.1038/nphoton.2015.112
Plöschner, 2014, GPU accelerated toolbox for real-time beam-shaping in multimode fibres, Opt. Express, 22, 2933, 10.1364/OE.22.002933
Tsvirkun, 2019, Flexible lensless endoscope with a conformationally invariant multi-core fiber, Optica, 6, 1185, 10.1364/OPTICA.6.001185
Zhao, 2018, Deep learning imaging through fully-flexible glass-air disordered fiber, ACS Photonics, 5, 3930, 10.1021/acsphotonics.8b00832
Li, 2020, Size effect study on high frequency transducers for sensitivity enhancement, IEEE Access, 8, 129263, 10.1109/ACCESS.2020.3009433
Guggenheim, 2017, Ultrasensitive plano-concave optical microresonators for ultrasound sensing, Nature Photonics, 11, 714, 10.1038/s41566-017-0027-x