Bond-selective photoacoustic imaging by converting molecular vibration into acoustic waves

Photoacoustics - Tập 4 - Trang 11-21 - 2016
Jie Hui1, Rui Li2, Evan H. Phillips2, Craig J. Goergen2, Michael Sturek2,3, Ji-Xin Cheng2,3,4,5
1Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
2Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
3Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
4Department of Chemistry, Purdue University, West Lafayette, IN, 47907 USA
5Purdue Institute of Inflammation, Immunology, and Infectious Diseases, West Lafayette, IN 47907, USA

Tài liệu tham khảo

Fernandez, 2005, Infrared spectroscopic imaging for histopathologic recognition, Nat. Biotechnol., 23, 469, 10.1038/nbt1080 Michael, 2010, 109 Anthony Shaw, 2010, 149 Duncan, 1982, Scanning coherent anti-Stokes Raman microscope, Opt. Lett., 7, 350, 10.1364/OL.7.000350 Andreas Zumbusch, 1999, Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering, Phys. Rev. Lett., 82, 4142, 10.1103/PhysRevLett.82.4142 Freudiger, 2008, Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy, Science, 322, 1857, 10.1126/science.1165758 Yue, 2014, Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness, Cell. Metab., 19, 393, 10.1016/j.cmet.2014.01.019 Sehgal, 1984, Scattering of ultrasound by tissues, Ultrason. Imaging, 6, 60, 10.1177/016173468400600106 Wang, 2012 Wang, 2009, Multiscale photoacoustic microscopy and computed tomography, Nat. Photonics, 3, 503, 10.1038/nphoton.2009.157 Yao, 2013, Photoacoustic microscopy, Laser Photonics Rev., 7, 758, 10.1002/lpor.201200060 Yao, 2011, Photoacoustic tomography: fundamentals, advances and prospects, Contrast Media Mol. Imaging, 6, 332, 10.1002/cmmi.443 Wang, 2012, Photoacoustic tomography: in vivo imaging from organelles to organs, Science, 335, 1458, 10.1126/science.1216210 Yang, 2009, Photoacoustic endoscopy, Opt. Lett., 34, 1591, 10.1364/OL.34.001591 Yang, 2012, Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo, Nat. Med., 18, 1297, 10.1038/nm.2823 Jansen, 2014, Intravascular photoacoustic imaging: a new tool for vulnerable plaque identification, Ultrasound Med. Biol., 40, 1037, 10.1016/j.ultrasmedbio.2014.01.008 Xu, 2006, Photoacoustic imaging in biomedicine, Rev. Sci. Instrum., 77, 041101, 10.1063/1.2195024 Yao, 2014, Sensitivity of photoacoustic microscopy, Photoacoustics, 2, 87, 10.1016/j.pacs.2014.04.002 Cox, 2012, Quantitative spectroscopic photoacoustic imaging: a review, J. Biomed. Opt., 17, 0612021, 10.1117/1.JBO.17.6.061202 de la Zerda, 2011, Advanced contrast nanoagents for photoacoustic molecular imaging: cytometry, blood test and photothermal theranostics, Contrast Media Mol. Imaging, 6, 346, 10.1002/cmmi.455 Pan, 2013, A brief account of nanoparticle contrast agents for photoacoustic imaging, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 5, 517, 10.1002/wnan.1231 Wu, 2014, Contrast agents for photoacoustic and thermoacoustic imaging: a review, Int. J. Mol. Sci., 15, 23616, 10.3390/ijms151223616 Li, 2009, Photoacoustic tomography and sensing in biomedicine, Phys. Med. Biol., 54, R59, 10.1088/0031-9155/54/19/R01 Ntziachristos, 2010, Going deeper than microscopy: the optical imaging frontier in biology, Nat Methods, 7, 603, 10.1038/nmeth.1483 Mallidi, 2011, Photoacoustic imaging in cancer detection: diagnosis, and treatment guidance, Trends Biotechnol., 29, 213, 10.1016/j.tibtech.2011.01.006 Taruttis, 2015, Advances in real-time multispectral optoacoustic imaging and its applications, Nat. Photonics, 9, 219, 10.1038/nphoton.2015.29 Pleitez, 2013, In vivo noninvasive monitoring of glucose concentration in human epidermis by mid-infrared pulsed photoacoustic spectroscopy, Anal. Chem., 85, 1013, 10.1021/ac302841f Yakovlev, 2010, Stimulated Raman photoacoustic imaging, Proc. Natl. Acad. Sci. U. S. A., 107, 20335, 10.1073/pnas.1012432107 Yakovlev, 2011, Monitoring stimulated Raman scattering with photoacoustic detection, Opt. Lett., 36, 1233, 10.1364/OL.36.001233 Jacques, 1993, Role of tissue optics and pulse duration on tissue effects during high-power laser irradiation, Appl. Opt., 32, 2447, 10.1364/AO.32.002447 Wang, 2011, Label-free bond-selective imaging by listening to vibrationally excited molecules, Phys. Rev. Lett., 106, 238106, 10.1103/PhysRevLett.106.238106 Jansen, 2011, Intravascular photoacoustic imaging of human coronary atherosclerosis, Opt. Lett., 36, 597, 10.1364/OL.36.000597 Wang, 2012, Mapping lipid and collagen by multispectral photoacoustic imaging of chemical bond vibration, J. Biomed. Opt., 17, 96010, 10.1117/1.JBO.17.9.096010 Wang, 2012, Bond-selective imaging of deep tissue through the optical window between1600 and 1850nm, J. Biophotonics, 5, 25, 10.1002/jbio.201100102 Allen, 2012, Spectroscopic photoacoustic imaging of lipid-rich plaques in the human aorta in the 740 to 1400nm wavelength range, J. Biomed. Opt., 17, 061209, 10.1117/1.JBO.17.6.061209 Wang, 2012, Intravascular photoacoustic imaging of lipid in atherosclerotic plaques in the presence of luminal blood, Opt. Lett., 37, 1244, 10.1364/OL.37.001244 Xu, 2010, Photoacoustic tomography of water in phantoms and tissue, J. Biomed. Opt., 15, 036019, 10.1117/1.3443793 Matthews, 2014, Label-free photoacoustic microscopy of peripheral nerves, J. Biomed. Opt., 19, 16004, 10.1117/1.JBO.19.1.016004 Li, 2016, Label-free in vivo imaging of peripheral nerve by multispectral photoacoustic tomography, J. Biophotonics, 9, 124, 10.1002/jbio.201500004 Li, 2013, Compact high power barium nitrite crystal-based Raman laser at 1197nm for photoacoustic imaging of fat, J. Biomed. Opt., 18, 040502, 10.1117/1.JBO.18.4.040502 Wu, 2014, Assessment of white matter loss using bond-selective photoacoustic imaging in a rat model of contusive spinal cord injury, J. Neurotrauma, 31, 1998, 10.1089/neu.2014.3349 Li, 2012, Intravascular photoacoustic imaging at 35 and 80MHz, J. Biomed. Opt., 17, 106005, 10.1117/1.JBO.17.10.106005 Wang, 2012, In vivo intravascular ultrasound-guided photoacoustic imaging of lipid in plaques using an animal model of atherosclerosis, Ultrasound Med. Biol., 38, 2098, 10.1016/j.ultrasmedbio.2012.08.006 Jansen, 2014, Photoacoustic imaging of human coronary atherosclerosis in two spectral bands, Photoacoustics, 2, 12, 10.1016/j.pacs.2013.11.003 Bai, 2014, Intravascular optical-resolution photoacoustic tomography with a 1.1mm diameter catheter, PLoS One, 9, pe92463, 10.1371/journal.pone.0092463 Zhang, 2014, Characterization of lipid-rich aortic plaques by intravascular photoacoustic tomography: ex vivo and in vivo validation in a rabbit atherosclerosis model with histologic correlation, J. Am. Coll. Cardiol., 64, 385, 10.1016/j.jacc.2014.04.053 Wang, 2014, High-speed intravascular photoacoustic imaging of lipid-laden atherosclerotic plaque enabled by a 2-kHz barium nitrite Raman laser, Sci. Rep., 4, 6889, 10.1038/srep06889 Hui, 2015, Converting molecular vibration to mechanical wave for bond-selective imaging of deep tissue†, Chinese J. Chem. Phys., 28, 375, 10.1063/1674-0068/28/cjcp1504069 Wang, 2010, Detection of lipid in atherosclerotic vessels using ultrasound-guided spectroscopic intravascular photoacoustic imaging, Opt. Express, 18, 4889, 10.1364/OE.18.004889 W.B. Gratzer, N.K.H. Suzaki, G.M. Hale, M.R. Querry, R.L.P. van Veen, H.J.C.M. Sterenborg, A. Pifferi, A. Torricelli, R. Cubeddu, Generic tissue optical properties. http://omlc.org/news/feb15/generic_optics/index.html (retrieved 17.1.2016). Nachabe, 2011, Effect of bile absorption coefficients on the estimation of liver tissue optical properties and related implications in discriminating healthy and tumorous samples, Biomed. Opt. Express, 2, 600, 10.1364/BOE.2.000600 Friebel, 2009, Influence of oxygen saturation on the optical scattering properties of human red blood cells in the spectral range 250 to 2000nm, J. Biomed. Opt., 14, 034001, 10.1117/1.3127200 Hale, 1973, Optical constants of water in the 200-nm to 200-microm wavelength region, Appl. Opt., 12, 555, 10.1364/AO.12.000555 Anderson, 2006, Selective photothermolysis of lipid-rich tissues: a free electron laser study, Lasers Surg. Med., 38, 913, 10.1002/lsm.20393 van Veen, 2005, Determination of visible near-IR absorption coefficients of mammalian fat using time- and spatially resolved diffuse reflectance and transmission spectroscopy, J. Biomed. Opt., 10, 054004, 10.1117/1.2085149 Cox, 2009, The challenges for quantitative photoacoustic imaging, Proc. SPIE, 7177, 717713, 10.1117/12.806788 Wang, 2013, Spectroscopic imaging of deep tissue through photoacoustic detection of molecular vibration, J. Phys. Chem. Lett., 4, 2177, 10.1021/jz400559a Workman, 2007 Rajian, 2013, Vibrational photoacoustic tomography: chemical imaging beyond the ballistic regime, J. Phys. Chem. Lett., 4, 3211, 10.1021/jz401638e Hai, 2014, Near-infrared optical-resolution photoacoustic microscopy, Opt. Lett., 39, 5192, 10.1364/OL.39.005192 Wright, 1987, The genetics of biogenic amine metabolism, sclerotization, and melanization in Drosophila melanogaster, Adv. Genet., 24, 127, 10.1016/S0065-2660(08)60008-5 Shaw, 2000, Correlates of sleep and waking in Drosophila melanogaster, Science, 287, 1834, 10.1126/science.287.5459.1834 Scott, 2004, Role and regulation of starvation-induced autophagy in the Drosophila fat body, Dev. Cell, 7, 167, 10.1016/j.devcel.2004.07.009 Baker, 2007, Diabetic larvae and obese flies-emerging studies of metabolism in Drosophila, Cell. Metab., 6, 257, 10.1016/j.cmet.2007.09.002 Slaidina, 2009, A Drosophila insulin-like peptide promotes growth during nonfeeding states, Dev. Cell, 17, 874, 10.1016/j.devcel.2009.10.009 Goodpaster, 2000, Intramuscular lipid content is increased in obesity and decreased by weight loss, Metabolism, 49, 467, 10.1016/S0026-0495(00)80010-4 He, 2001, Skeletal muscle lipid content and oxidative enzyme activity in relation to muscle fiber type in type 2 diabetes and obesity, Diabetes, 50, 817, 10.2337/diabetes.50.4.817 Liu, 2006, A novel role of phospholipase A2 in mediating spinal cord secondary injury, Ann. Neurol., 59, 606, 10.1002/ana.20798 Martel, 2014, Photoacoustic lymphatic imaging with high spatial-temporal resolution, J. Biomed. Opt., 19, 116009, 10.1117/1.JBO.19.11.116009 Erpelding, 2010, Sentinel lymph nodes in the rat: noninvasive photoacoustic and US imaging with a clinical US system, Radiology, 256, 102, 10.1148/radiol.10091772 Akers, 2011, Noninvasive photoacoustic and fluorescence sentinel lymph node identification using dye-loaded perfluorocarbon nanoparticles, ACS Nano, 5, 173, 10.1021/nn102274q Gamelin, 2009, A real-time photoacoustic tomography system for small animals, Opt. Express, 17, 10489, 10.1364/OE.17.010489 Taruttis, 2010, Real-time imaging of cardiovascular dynamics and circulating gold nanorods with multispectral optoacoustic tomography, Opt. Express, 18, 19592, 10.1364/OE.18.019592 Hudson, 2014, Targeted noninvasive imaging of EGFR-expressing orthotopic pancreatic cancer using multispectral optoacoustic tomography, Cancer Res., 74, 6271, 10.1158/0008-5472.CAN-14-1656 Zhou, 2015, Handheld photoacoustic probe to detect both melanoma depth and volume at high speed in vivo, J. Biophotonics, 8, 961, 10.1002/jbio.201400143 Carr, 1996, Atherosclerotic plaque rupture in symptomatic carotid artery stenosis, J. Vasc. Surg., 23, 755, 10.1016/S0741-5214(96)70237-9 Collaborators, 1991, Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis, N. Engl. J. Med., 325, 445, 10.1056/NEJM199108153250701 Hui, 2015, Assessing carotid atherosclerosis by fiber-optic multispectral photoacoustic tomography, Proc. SPIE, 9323, 93233S, 10.1117/12.2076999 Sharma, 2000, Peripheral nerve injuries during cardiac surgery: risk factors, diagnosis, prognosis, and prevention, Anesth. Analg., 91, 1358, 10.1097/00000539-200012000-00010 Antoniadis, 2014, Iatrogenic nerve injuries: prevalence, diagnosis and treatment, Dtsch. Arztebl. Int., 111, 273 Jung, 2003, Neuropathic pain following breast cancer surgery: proposed classification and research update, Pain, 104, 1, 10.1016/S0304-3959(03)00241-0 Wilbourn, 1998, Iatrogenic nerve injuries, Neurol. Clin., 16, 55, 10.1016/S0733-8619(05)70367-4 Jaumot, 2005, A graphical user-friendly interface for MCR-ALS: a new tool for multivariate curve resolution in MATLAB, Chemom. Intell. Lab. Syst., 76, 101, 10.1016/j.chemolab.2004.12.007 Fisher, 2002, Twenty-year follow-up of a randomized trial comparing total mastectomy: lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer, N. Engl. J. Med., 347, 1233, 10.1056/NEJMoa022152 Veronesi, 2002, Twenty-year follow-up of a randomized study comparing breast-conserving surgery with radical mastectomy for early breast cancer, N. Engl. J. Med., 347, 1227, 10.1056/NEJMoa020989 Aziz, 2006, The role of reexcision for positive margins in optimizing local disease control after breast-conserving surgery for cancer, Breast J., 12, 331, 10.1111/j.1075-122X.2006.00271.x Dillon, 2007, Factors affecting successful breast conservation for ductal carcinoma in situ, Ann. Surg. Oncol., 14, 1618, 10.1245/s10434-006-9246-y Fleming, 2004, Intraoperative margin assessment and re-excision rate in breast conserving surgery, Eur. J. Surg. Oncol., 30, 233, 10.1016/j.ejso.2003.11.008 Jacobs, 2008, Positive margins: the challenge continues for breast surgeons, Ann. Surg. Oncol., 15, 1271, 10.1245/s10434-007-9766-0 Li, 2015, Assessing breast tumor margin by multispectral photoacoustic tomography, Biomed. Opt. Express, 6, 1273, 10.1364/BOE.6.001273 Guggenheim, 2015, Photoacoustic imaging of human lymph nodes with endogenous lipid and hemoglobin contrast, J. Biomed. Opt., 20, 50504, 10.1117/1.JBO.20.5.050504 Libby, 2002, Inflammation in atherosclerosis, Nature, 420, 868, 10.1038/nature01323 Naghavi, 2003, From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: part I, Circulation, 108, 1664, 10.1161/01.CIR.0000087480.94275.97 Fernandez-Ortiz, 1994, Characterization of the relative thrombogenicity of atherosclerotic plaque components: implications for consequences of plaque rupture, J. Am. Coll. Cardiol., 23, 1562, 10.1016/0735-1097(94)90657-2 Falk, 1995, Coronary plaque disruption, Circulation, 92, 657, 10.1161/01.CIR.92.3.657 Puri, 2013, Exploring coronary atherosclerosis with intravascular imaging, Int. J. Cardiol., 168, 670, 10.1016/j.ijcard.2013.03.024 Beard, 1997, Characterization of post mortem arterial tissue using time-resolved photoacoustic spectroscopy at 436, 461 and 532nm, Phys. Med. Biol., 42, 177, 10.1088/0031-9155/42/1/012 Sethuraman, 2008, Spectroscopic intravascular photoacoustic imaging to differentiate atherosclerotic plaques, Opt. Express, 16, 3362, 10.1364/OE.16.003362 Hui, 2015, High-speed intravascular photoacoustic imaging at 1.7μm with a KTP-based OPO, Biomed. Opt. Express, 6, 4557, 10.1364/BOE.6.004557 Li, 2015, High-speed intravascular spectroscopic photoacoustic imaging at 1000 A-lines per second with a 0.9-mm diameter catheter, J. Biomed. Opt., 20, p065006, 10.1117/1.JBO.20.6.065006 Piao, 2015, High speed intravascular photoacoustic imaging with fast optical parametric oscillator laser at 1.7m, Appl. Phys. Lett., 107, p083701, 10.1063/1.4929584 Maslov, 2008, Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries, Opt. Lett., 33, 929, 10.1364/OL.33.000929 Hu, 2011, Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed, Opt. Lett., 36, 1134, 10.1364/OL.36.001134 Cai, 2002, Classification of human carotid atherosclerotic lesions with in vivo multicontrast magnetic resonance imaging, Circulation, 106, 1368, 10.1161/01.CIR.0000028591.44554.F9 Schwimmer, 2015, Magnetic resonance imaging and liver histology as biomarkers of hepatic steatosis in children with nonalcoholic fatty liver disease, Hepatology, 61, 1887, 10.1002/hep.27666 American National Standard for Safe Use of Lasers, ANSI Z136.1. 2014: Laser Institute of America.